A MONOGRAPH

OF THE

BRITISH DESMIDIACEÆ

BY

W. WEST, F.L.S.,

Ex-president of the Yorkshire Naturalists' Union;
Lecturer in Botany, Biology, and Bacteriology at the Technical College, Bradford;

AND

G. S. WEST, M.A., F.L.S., A.R.C.S.,

Professor of Natural History at the Royal Agricultural College, Cirencester;
Formerly Scholar and Hutchinson Research Student of St. John's College, Cambridge

VOLUME II

LONDON
PRINTED FOR THE RAY SOCIETY

1905
CONTENTS OF VOL. II.

Family Desmidiaceæ.

Sub-Family II. Placodermæ.

Tribe 5. Cosmaræ (continued).

Genus 13. Euastrum. 1
14. Micrasterias 76
15. Cosmarium 125
ERRATUM.

p. 7, line 4, for fig. 4 read fig. 6.
LIST OF THE PLATES.

PLATE XXXIII.

Figs. 1–3.—Euastrum ventricosum (p. 4)
,, 4–8.—E. crassum (p. 5)

PLATE XXXIV.

Figs. 1–2.—Euastrum humerosum (p. 8)
,, 3–6.—E. pinnatum (p. 10)
,, 7–10.—E. oblongum (p. 12)

PLATE XXXV.

Figs. 1–2.—Euastrum oblongum (p. 12)
,, 3–7.—E. Didelta (p. 15)
,, 8–10.—E. ampullaceum (p. 19)
,, 11–12.—E. affine (p. 17)

PLATE XXXVI.

Figs. 1–3.—Euastrum sinuosum (p. 20)
,, 4.—E. Jenneri (p. 22)
,, 5–6.—E. aboense (p. 23)
,, 7–8.—E. inerme (p. 24)
,, 9.—E. cuneatum (p. 25)
,, 10–15.—E. ausatum (p. 27)
,, 16–17.—E. obesum (p. 29)

PLATE XXXVII—continued.

Figs. 9–10.—E. Turneri (p. 37)
,, 11–13.—E. rostratum (p. 35)
,, 14–15.—E. spinosum (p. 38)
,, 16–19.—E. bidentatum (p. 39)

PLATE XXXVIII.

Figs. 1–2.—Euastrum pictum (p. 41)
,, 3–4.—E. divaricatum (p. 42)
,, 5–11.—E. dubium (p. 43)
,, 12–13.—E. erosum (p. 45)
,, 14–15.—E. pulchellum (p. 46)
,, 16–27.—E. elegans (p. 48)
,, 28–36.—E. binale (p. 51)
,, 37.—E. minutissimum (p. 57)

PLATE XXXIX.

Figs. 1–5.—Euastrum denticulatum (p. 57)
,, 6–7.—E. incavatum (p. 58)
,, 8–9.—E. montanum (p. 58)
,, 10–16.—E. pectinatum (p. 60)
,, 17–18.—E. crassangulatum (p. 70)
,, 19.—E. gemmatum (p. 63)
,, 20.—E. occidentale (p. 67)

PLATE XL.

Figs. 1–7.—Euastrum verrucosum (p. 64)
,, 8.—E. Cornubiense (p. 70)
,, 9–10.—E. crassicolle (p. 71)
,, 11–14.—E. insulare (p. 68)
,, 15–18.—E. crispulum (p. 72)
,, 19–20.—E. sublobatum (p. 74)
,, 21–22.—E. validum (p. 75)
LIST OF THE PLATES.

PLATE XLI.

Figs. 1-6.—Microasterias oscitans (p. 78)

,, 7-13.—M. pinnatifida (p. 80)

PLATE XLII.

Figs. 1-9.—Microasterias truncata (p. 81)

,, 10-13.—M. crenata (p. 85)

,, 14.—M. Jenneri (p. 86)

PLATE XLIII.

Figs. 1-3.—Microasterias Jenneri (p. 86)

,, 4-11.—M. conferta (p. 88)

PLATE XLIV.

Figs. 1-7.—Microasterias papillifera (p. 91)

PLATE XLV.

Figs. 1-4.—Microasterias Murrayi (p. 93)

,, 5-6.—M. truncata (p. 82)

,, 7.—Euastrum sublobatum (p. 73)

PLATE XLVI.

Figs. 1-4.—Microasterias Sol (p. 95)

,, 5-6.—M. apiculata (p. 97)

PLATE XLVII.

Figs. 1-7.—Microasterias apiculata (p. 97)

PLATE XLVIII.

Figs. 1-6.—Microasterias rotata (p. 102)

PLATE XLIX.

Figs. 1-7.—Microasterias denticulata (p. 105)

PLATE L.

Figs. 1-7.—Microasterias denticulata (p. 105)

PLATE LI.

Figs. 1.—Microasterias cornuta (p. 124)

,, 2.—M. verrucosa (p. 109)

,, 3-6.—M. Thomasiana (p. 110)

,, 7.—M. Thomasiana-denticulata (p. 112)

PLATE LII.

Figs. 1-9.—Microasterias radiata (p. 113)

PLATE LIII.

Figs. 1-3.—Microasterias Crux-melitensis (p. 116)

,, 4-6.—M. Americana (p. 117)

PLATE LIV.

Figs. 1-6.—Microasterias Americana (p. 117)

,, 7-8.—M. Mahabaleshwarensis (p. 122)

PLATE LV.

Figs. 1-3.—Microasterias Mahabaleshwarensis (p. 122)

,, 4.—Euastrum crassum (p. 8)

PLATE LVI.

Figs. 1-4.—Cosmarium obsoluetum (p. 133)

,, 5-7.—C. Smolandicum (p. 134)

,, 8-10.—C. taxichondriforme (p. 136)

,, 11-14.—C. circulare (p. 136)
LIST OF THE PLATES.

Plate LVII.
Figs. 1–6.—Cosmarium Lundellii (p. 138)
,, 7–9.—C. pachydermum (p. 139)
,, 10.—C. Ralfsii (p. 141)

Plate LVIII.
Figs. 1–3.—Cosmarium Ralfsii (p. 141)
,, 4–5.—C. perforatum (p. 143)
,, 6–7.—C. ocellatum (p. 144)
,, 8–12.—C. cyclicum (p. 145)

Plate LIX.
Figs. 1–12.—Cosmarium undulatum (p. 148)
,, 13–15.—C. subundulatum (p. 151)
,, 16–17.—C. fontigenum (p. 147)
,, 18–22.—C. Cucumis (p. 152)

Plate LX.
Figs. 1–4.—Cosmarium Subcucumis (p. 155)
,, 5–10.—C. microsphinetum (p. 156)
,, 11.—C. morsum (p. 157)
,, 12–17.—C. Phaseolus (p. 158)
,, 18–19.—C. tumidum (p. 160)
,, 20.—C. Trofalgaricum (p. 161)
,, 21–23.—C. melanosporum (p. 162)
,, 24–27.—C. aspherosporum (p. 163)

Plate LXI.
Figs. 1–2.—Cosmarium inconspicuum (p. 164)
,, 3–11.—C. bioculatum (p. 165)
,, 12–15.—C. tenue (p. 167)
,, 16–20.—C. tinetum (p. 168)
,, 21–22.—C. flexum (p. 170)
,, 23–35.—C. contractum (p. 170)

Plate LXI—continued.
Figs. 36–37.—C. subcontractum (p. 174)
,, 38.—C. subaversum (p. 174)

Plate LXII.
Figs. 1.—Cosmarium tetraechondrum (p. 175)
,, 2–10.—C. depressum (p. 176)
,, 11–13.—C. subquadrans (p. 178)
,, 14–16.—C. succisum (p. 179)
,, 17–18.—C. retusiforme (p. 180)
,, 19.—C. subretusiforme (p. 180)
,, 20–25.—C. Hammeri (p. 181)
,, 26–27.—C. Nymanianum (p. 184)
,, 28–30.—C. trilobulatum (p. 185)

Plate LXIII.
Figs. 1–10.—Cosmarium granatum (p. 186)
,, 11–15.—C. Pokornyanum (p. 190)
,, 16–17.—C. pseudatlantloidum (p. 191)
,, 18–23.—C. subtundum (p. 192)
,, 24–25.—C. galeritum (p. 194)
,, 26–30.—C. pseudonitidulum (p. 195)

Plate LXIV.
Figs. 1–3.—Cosmarium nitidulum (p. 197)
,, 4.—C. canaliculatum (p. 198)
,, 5–8.—C. pyramidatum (p. 199)
,, 9–13.—C. pseudopyramidatum (p. 201)
,, 14–16.—C. variolatum (p. 203)
,, 17.—Euastrum pulchellum (p. 46)
ADDITIONAL BIBLIOGRAPHY.

(See Vol. I, pp. xvii–xxxvi.)

Genus 13. **EUASTRUM** Ehrenb., 1832.

Ralfs, Brit. Desm. 1848, p. 78.
De Bary, Conj. 1858, p. 50, 70–71.
Arch. in Pritch. Infus. 1861, pp. 720, 728.

Cells of variable size, longer than broad, *compressed*, deeply constricted in the middle, sinus generally linear (rarely open); semicells commonly truncate-pyramidate, *apex with a median incision of variable depth*, sometimes scarcely evident or absent, lateral margins entire, sinuate, or variously lobed, at or near the centre of the semicells *with one or more somewhat hemispherical protuberances* (or *tumours*) variously disposed; vertical view more or less elliptical, with one or more protuberances on each side; one chloroplast in each semicell, often irregularly lobed and ridged, with a single central pyrenoid in the small species, and a number of scattered ones in the large species.

Zygospores globose, ellipsoid, or oblong-ellipsoid, ornamented with numerous conical papillae, or with simple (or furcate) spines.
The genus *Euastrum* is separated from the preceding genera of the Cosmarieae by the relatively short, compressed cells. It resembles *Tetmemorus* in the presence of the apical notch, but differs in its short, compressed cells, with sinuate or lobed margins and central protuberances (or tumours).

Euastrum includes a great variety of species, some of which are transitional forms connecting it with other genera, such as *Cosmarium* and *Micrasterias*. *E. verrucosum* is the only British species connecting it with *Micrasterias*, but quite a number of British species connect the genus with *Cosmarium*; such (for example) are,—*E. occidentale*, *E. montanum*, *E. Cornubiiense*, and *E. crispulum*.

Most of the species are lobed, some more than others, and there is always an odd number of lobes. The unpaired lobe at the apex of the semicell is always termed the polar lobe; the others are known as lateral lobes.

The name "*Helierella*" (Bory, 'Dictionnaire classique d'Histoire naturelle', 1826, vol. viii, p. 98) which was revived by O. Kuntze ('Revis. gen. plant.' 1891, p. 897, etc.) is absolutely useless as a generic name. It is impossible to establish a genus on the remarks made by Bory, and Kuntze's genus *Helierella* includes two well-defined and well-known genera of Desmids.

There are 46 British species, less than half of which can be considered as common. They can be conveniently arranged, with due consideration of their relationships, as follows:—

SECTION A. Polar lobe with a distinct median notch, often deep and linear.

1. Cells generally large (length 50—205 μ), polar lobe short; cell-wall usually punctate or scrobiculate; external angles of polar lobe rounded.

* Lateral margins lobed or sinuate.

1. *E. ventricosum*.
2. *E. crassum*.
3. *E. humerosum*.
4. *E. pinnatum*.
5. *E. oblongum*.
7. *E. affine*.
8. *E. ampullaceum*.
9. *E. sinuosum*.
10. *E. Jenneri*.
11. *E. aboense*.
12. *E. inerme*.

** Lateral margins entire.

13. *E. cuneatum*.
14. *E. ansatum*.
15. *E. obesum*.
16. *E. pingue*.
β. Cells of medium size (length 26—135 μ), polar lobe distinctly elongate; cell-wall smooth or scrobiculate; external angles of polar lobe rounded.

17. *E. insigne.*
18. *E. intermedium.*
19. *E. Webbianum.*

γ. Cells generally small (length 10—79 μ); cell-wall smooth, granulate, or spinous; external angles of polar lobe usually furnished with a spine.

* Lateral margins crenate, lobed, or sinuate.
† Margins crenate.

†† Margins lobed or sinuate.

22. *E. Turnerii.*
23. *E. spinosum.*
24. *E. bidentatum.*
25. *E. pictum.*
27. *E. dubium.*
28. *E. erosum.*

** Lateral margins usually without lobes.

29. *E. pulchellum.*
30. *E. elegans.*
31. *E. binale.*
32. *E. denticulatum.*
33. *E. minutissimum.*
34. *E. incavatum.*
35. *E. montanum.*

Section B. Polar lobe entire, generally somewhat retuse in the middle.

α. Cells large, 48—114 μ in length.

* Margin distinctly lobed.
† Cell-wall smooth.

†† Cell-wall granulate.

36. *E. pectinatum.*
37. *E. gemmatum.*
38. *E. verrucosum.*

** Margin not lobed; cell-wall granulate.

β. Cells small, 17·5—48 μ in length.

* Semicells distinctly three-lobed.

40. *E. insulare.*
41. *E. crassangulatum.*
42. *E. Cornubiense.*

** Semicells not distinctly three-lobed.

43. *E. crassicolle.*
44. *E. crispulum.*
45. *E. sublobatum.*
46. *E. validum.*

(Pl. XXXIII, figs. 1–3.)

? *Euastrum crassum* (Bréb.) Kütz. var. β Ralfs, Brit. Desm. 1848, t. 11, f. 3 e, f.

Helierella ventricosa Kuntze, Revis. gen. plant. 1891, p. 899.

Cells rather above the medium size, 1½ times longer than broad, deeply constricted, sinus narrowly linear; semicells in front view somewhat semi-elliptical, strongly dilated at the base, unequally three-lobed, the intervening incisions narrow; polar lobe smaller than lateral lobes, strongly convex, with a deep and narrow median incision, from vertical view oblong-elliptic with deeply emarginate poles; lateral lobes bilobulate, with a broad median hollow, upper lobule obtuse and from the side view entire, lower lobule subtriangular with basal angles somewhat rounded; semicells with three tumours across the base and two across the middle. Side view of semicell somewhat pyramidate, with a protuberance on each side below the middle; apex dilated, truncate, with rounded angles. Vertical view angular-elliptic, showing five undulations on each side. Cell-wall punctate.

Zygospore globose, furnished with large pointed teeth which are mostly curved (about twelve teeth visible around the margin).

Length 80–136 μ; breadth 52–80 μ; breadth of isthmus 18–28 μ; thickness 33–48 μ; diam. zygosp., with teeth, about 110 μ.

England.—Near Bowness, Westmoreland (Bissett). Hawkshead, Lancashire! Thursley Common, Surrey! Near Bovey Tracey, Devon (Bennett).

Wales.—Llyn Teyrn, Snowdon, bog above Capel Curig Lakes, Carnarvonshire! Dolgelly, Merioneth! Scotland. — Sutherland! Inverness! Aberdeen!
Kincardine, Perth! Argyll, Arran (Roy & Bissett). Ross and Skye! General and often abundant in the Outer Hebrides!

Ireland. — Lough Macgrath and near Dungloe, Donegal! Near Foxford, Mayo! Ballynahinch, Kylemore, and Lakes near Recess, Galway! Carrantuohill and near Castletown, Kerry! Dublin and Wicklow (Archer).

This characteristic species is somewhat rare in the British Islands. In some parts of the west of Ireland, Skye, and in the Outer Hebrides, it occurs in large quantity along with E. inerme (Ralfs) Lund.

It is considerably smaller than E. crassum, of different proportions, and differs considerably in its lateral lobes, the upper lobules of which are entire. Wolle observed the zygospore from Florida, U.S.A.

2. Euastrum crassum (Bréb.) Kütz.

(Pl. XXXIII, figs. 4–6.)

Heterocarpella crassa Bréb. in Cheval. microscop. et usage, Paris, 1839, p. 272 (name).

Cells large, almost twice as long as broad, elliptic-oblung, deeply constricted, sinus narrowly linear; semicells in front view unequally three-lobed, inter-
vening incisions narrow, closed or slightly open; polar lobe smaller than the lateral lobes, convex and broadly cuneate, with a deep and narrow median incision, from vertical view oblong-elliptic with deeply emarginate poles; lateral lobes very broad, sides broadly hollowed (sometimes with a rounded lateral projection), angles rounded; semicells with three prominent protuberances across the base and two very slight tumours across the middle. Side view of semicell subpyramidal, with subrectangular basal angles and a rounded-truncate apex, the upper lateral lobule emarginate and the lower one entire. Vertical view oblong-elliptic, with a slight protuberance at each pole and one in the centre of the convex sides. Cell-wall punctate, angles of lobes strongly thickened.

Zygospore unknown.

Length 163–205 μ; breadth 79–106 μ; breadth of isthmus 24–30 μ; thickness 56–75 μ.

Wales.—General in Carnarvonshire (Glyder Fach at 2,200 ft.)! Dolgelly, Merioneth!

Scotland.—General! (Roy & Bissett).

Ireland.—Donegal! Mayo! Galway! Kerry! Dublin and Wicklow (Archer). Down!

E. crassum is a large and handsome species which occurs abundantly in many parts of the British Isles, and it is rather remarkable that up to the present time its zygospores have escaped observation.

It is a somewhat variable species with regard to the incisions between the lobes and the form of the lateral lobes. The interlobular incisions may be narrow and closed, or they may be considerably open, and the lateral lobes frequently possess a median rounded protuberance. This is a variation which has received a name from several authors ("var. appendicu-
EUASTRUM. 7

latum Bréb.”; “var. majus Rabenh.”), but which is not a true variety. Frequently one semicell is typical and the other in possession of this lateral protuberance. Such is the example we have figured on Pl. XXXIII, fig. 4. Consult also, West, ‘Alg. N. Wales,’ 1890, p. 287, t. 6, fig. 33.

The Desmid to which Bennett gave the name “E. crasso-humerosum n. var.” is a very badly drawn specimen of E. crassum, in which the interlobular incisions were somewhat open. Bennett’s idea that it was a hybrid was a mere supposition; he did not even examine the nature of its protuberances or obtain its other views.

Var. scrobiculatum Lund. (Pl. XXXIII, figs. 7, 8.)

Cells usually smaller than in the type; lateral margins of semicells not so hollowed, often straight; in the centre of the semicells (in the neighbourhood of the two small tumours) with 1–6 large scrobiculations, variously disposed; side view of semicells with more ventricose lateral margins, considerably attenuated towards the apex; vertical view rather more rectangular-oblong than in the type.

Length 134–169 μ; breadth 65–88 μ; breadth of isthmus 18–26 μ; thickness 51–65 μ.

ENGLAND.—New Forest, Hants!

SCOTLAND.—Skye, Inverness! Harris, Lewis, N. Uist, and Benbecula, Outer Hebrides!

WALES.—Moel Siabod, bog above Capel Curig, bog between Glyder Fach and Llugwy, Carnarvonshire!

IRELAND.—Near Gweedore, near Loughs Glentornan and Magrath, Donegal! Cromagloun, Kerry!

This is a very characteristic variety of rare occurrence. The scrobiculations in the centre of the semicells, which are the largest marks of that type in any Desmid, vary much in
number and in disposition, the commonest arrangements being two (one vertically over the other), and four disposed in the form of a cross. This variability was first pointed out by Nordstedt. The side and vertical views of this variety also differ to a certain extent from those of the type.

Var. *Taturnii* var. *nov.* (Pl. LV, fig. 4.)

Cells with a widely-open, acuminate sinus, basal angles of semicells subuncinate-mamillate; polar lobe anvil-shaped with a convex apex, incisions on each side below the polar lobe widely excavated towards their inner extremities; cell-wall strongly punctate, with a single large scrobiculation in the centre of each semicell. Side and vertical views as in the type.

Length 165 μ; breadth 110 μ; breadth of isthmus 37 μ.

England.—Near Salisbury, Wilts! (*E. J. Taturn*).

This variety occurred amongst numerous specimens of the type in a collection from a Sphagnum-bog.

The form of *E. crassum* described by Wood as "*E. ornatum*" (*vide* Wood in *Proc. Acad. Nat. Sci. Philad.*, 1870, p. 17; *Freshw. Alg. N. Amer.*, 1873, p. 137, t. 21, f. 12), and subsequently placed as "*E. crassum var. ornatum*" by Hansgirg (1888), may possibly be the same as this variety, but neither the description nor the figure given by Wood is sufficiently accurate to determine the identity of the form in question.

Note.—*E. crassum var. cornubiense* Benn. Alg. N. Cornwall, 1887, p. 16, t. 4, f. 19; Cooke, Brit. Desm., 1887, t. 65, f. 4 (from Bennett); De Toni, Syll. Alg., 1889, p. 1088. This is a form of *E. crassum* with open interlobular incisions and with the lateral protuberances on the margins of the lateral lobes, which is most incorrectly described and still more badly figured. "Protuberances" such as those described and figured by Bennett do not occur on any known *Euastrum*. Moreover, his dimensions are vastly different from the proportions of his figure.

(Pl. XXXIV, figs. 1, 2.)

Euastrum humerosum Ralfs, Brit. Desm. 1848, p. 82, t. 13, f. 2; Arch. in Pritch. Infus. 1861, p. 729; Rabenh. Flor. Europ. Algar. III, 1868,

Cells of moderate size, rather less than twice as long as broad, deeply constricted, sinus narrowly linear and dilated at the apex; semicells five-lobed, incisions between the lobes widely open, upper incisions deeper and less widely open than lower incisions; polar lobe dilated, almost anvil-shaped with rounded angles, apex convex, straight, or even slightly retuse, with a fairly deep and narrow median incision; upper lateral lobes mammillate or narrowly mammillate, directed upwards and outwards; lower lateral lobes subquadrate, with retuse margins and rounded angles; semicells with three prominent protuberances across the base and two smaller ones across the middle. Vertical view elliptic, with three prominent protuberances on each side. Cell-wall punctate.

Zygospore unknown.

Length 110–123 μ; breadth 65–75 μ; breadth of isthmus 15.5–22 μ; thickness 40 μ.

England.—Blea Tarn, Westmoreland! Pilmoor, N. Yorks! New Forest, Hants (*Ralfs*). Near Bovey Tracey, Devon (*Bennett*). Halgavor Moor, Cornwall!

Wales.—Llyn Padarn!, Llyn-y-cwm-ffynnon!, and near Bettws-y-coed (*Roy*), Carnarvonshire. Dolgelly, Merioneth (*Ralfs*).

Scotland.—Ross! Inverness, Aberdeen! Kincardine, Forfar, Perth, Argyll, Arran (*Roy & Bissett*).

Ireland.—Lough Guitane and Carrantuohill, Kerry! Dublin and Wicklow (*Archer*).

E. humerosum is the rarest of the larger British species of *Euastrum*. It is subject to considerable variation in the
depth of the interlobular incisions, the amount of projection of the upper lateral lobes, and in the shape of the polar lobe. We have given a figure of the form of this species most often observed in Scotland (Pl. XXXIV, fig. 1), and it will be seen to differ from the figures given by Ralfs in the convex apex of the polar lobe and in the less deep incisions beneath the polar lobe. All intermediate stages occur between this form and the one figured by Ralfs.

Archer (in "Quart. Journ. Micr. Sci.," 1875, p. 414) observed a zygospore formed by the conjugation of *E. humerosum* and *E. Didelta*. This is the only case of true hybridization ever recorded among the Desmidiaceae, and it would have been most interesting to have witnessed the development of the zygospore.

Some specimens possess three large scrobiculations situated in the centre of the semicell between the tumours. This form has been named "forma scrobiculata Nordst."

(Pl. XXXIV, figs. 3–6.)

Helierella pinnata Kuntze, Revis. gen. plant. 1891, p. 899.

Cells moderately large, about twice as long as broad, deeply constricted, sinus narrowly linear with the extremity dilated; semicells five-lobed, incisions between the lobes fairly deep and widely open; polar lobe projecting, anvil-shaped with rounded angles, apex straight, rarely retuse or convex, with a fairly deep and narrow median incision; upper lateral lobes broadly mamillate, with the upper margin horizontal (sometimes much broader, subquadrate, and subemarginate); lower lateral lobes subquadrate, and retuse with rounded angles; semicells with a large protuberance within each of the lower lateral lobes, and with three smaller ones at the base near the centre,
one just above the isthmus and two others immediately above it, forming a triangle with it; upper half of semicell destitute of protuberances. Side view of semicell with the lower third subrectangular and upper third elongate-pyramidate, protuberances of lower part of semicell showing distinctly at the sides near the base; apices dilated, slightly retuse and with rounded angles; upper lateral lobe widely emarginate. Vertical view elliptic, with four prominent protuberances at each side, and a fifth showing between and below the two central ones; upper lateral lobes widely emarginate; polar lobe oblong-rectangular, with retuse sides, emarginate poles, and rounded angles. Cell-wall coarsely punctate, angles and protuberances frequently scrobiculate (and with a slightly roughened surface).

Zygospore unknown.

Length 130–153 μ; breadth 68–77 μ; breadth of isthmus 20–24 μ; thickness 46–50 μ.

England.—Angle Tarn, Cumberland! Elter Water!, near Bowness (Bissett), Loughrigg (Bennett), Westmoreland. Hawkshead, Lancashire! New Forest, Hants (Bennett).

Wales.—Capel Curig and Llyn-y-cwm-ffynon !, Peny-gwryd (Roy), Carnarvonshire. Dolgelly, Merioneth (Rals).

Scotland.—Sutherland! Ross!, Aberdeen, Kincardine, Forfar, Perth, Argyll (Roy & Bissett). Lewis, Harris (often abundant), and N. Uist, Outer Hebrides!IRELAND.—Dungloe, Donegal! Roundstone, Ballynahinch, Loughs Aunierin and Shindilla, Galway! Near Castletown and Carrantuohill, Kerry! Dublin and Wicklow (Archer).

E. pinnatum is a very characteristic species, and in certain parts of the west of Scotland and Ireland it occurs in abundance. The figures given by Rals (loc. t. 13, f. 1) are not good. Rals’ fig. 1 a gives a correct idea of the outline of the average form, but figs. 1 b, c, and d are incorrectly drawn,
fig. 1c of the side view being particularly erroneous. Ralfs did not grasp the disposition of the protuberances on *E. pin-natum*, causing Lundell ("Desm. Suec." 1871, p. 19) to mention the typical form as a "forma." The upper half of the semi-cell (in fact, all that part of it above the inferior interlobular incisions) is quite destitute of any trace of protuberances on its surface. There is one large protuberance within each lower lateral lobe, and there are three others (not four as figured by Ralfs) in the centre of the basal part of the semi-cell. These three are smaller and disposed in the form of a triangle with one angle immediately above the isthmus. Lundell was thus quite right in his interpretation of the protuberances on his Swedish specimens.

The principal variation met with is in the upper lateral lobes. These lobes are always widely emarginate when seen in either the side or vertical views, but generally mamillate and entire when seen in front view. In some specimens, however, these lobes are very broad in front view (vide Pl. XXIV, fig. 6), and they may be rounded-square with retuse margins. Every state is met with between the ordinary mamillate condition and the retuse condition, and the two extremes may be found on the same cell. These forms with the broad, retuse, upper lateral lobes greatly resemble *E. oblongum*, but can be at once distinguished in either the side or vertical view.

(Pl. XXXIV, figs. 7–9; Pl. XXXV, fig. 2.)

Cosmarium sinuosum Corda, Almanach de Carlsbad, 1835, p. 121, t. 2, f. 21.

Cosmarium oblongum Bréb. in Menegh. Synops. Desm. 1840, p. 221.

EUASTRUM.

Euastrum oblongiforme Cramer in *Hedwigia*, 1863, p. 64, t. 12, f. 3.

Cells large, about twice as long as broad, in general outline oblong-elliptic, deeply constricted, sinus narrowly linear and slightly dilated at the apex; semicells five-lobed, incisions between the lobes fairly deep and generally slightly open (upper ones occasionally closed); polar lobe widely cuneate, with rounded angles, apex convex with a deep and narrow median incision; upper and lower lateral lobes similar, upper ones slightly smaller than lower ones, subquadrature with retuse margins and rounded angles; semicells with a protuberance within each of the lateral lobes, with one at the base immediately above the isthmus, and with two smaller ones in the centre (often with a large scrobiculation between them). Side view of semicell elongate-pyramidate, with rectangular basal angles and a dilated, convex apex; lateral lobes round-rhomboidal, with somewhat retuse margins, upper angle of upper lateral lobe rarely emarginate. Vertical view broadly elliptic, poles narrow and rounded, sides with four protuberances and a fifth one between and beneath the two central ones; polar lobe oblong elliptical, with convex sides, emarginate poles, and rounded angles. Cell-wall finely punctate.

Zygospore globose, closely covered with numerous mammillate projections.

Length 144–205 μ; breadth 74–107 μ; breadth of isthmus 20–31 μ; thickness 46–65 μ; diam. zygosp. without mammillate projections 92–123 μ; length of mammillae 7.5–9 μ.

ENGLAND.—Cumberland! Westmoreland!, (Ralfs). W., N. and E. Yorks. (zygospores from Pilmoor, N. Yorks)! Lancashire! Cheshire (Ralfs). Leicestershire

Scotland.—General! (Roy & Bissett). Zygospores from Powlair, Aberdeen (Roy & Bissett). Outer Hebrides! Orkneys! Shetlands!

This is a large and handsome Desmid which is generally distributed throughout the British Islands. The figures given by Ralfs are not very accurate except for the outline. That author failed to depict the two small, central protuberances in each semicell, and his vertical view is very erroneous. Between and slightly below these central protuberances a large scrobiculation is frequently present; this form has been named "forma scrobiculata Nordst."

There are no protuberances on the front surface of the polar lobe such as are indicated by Ralfs and other observers. This is seen at once from the vertical view. The protuberances figured by Ralfs and others on the polar lobes of many species of this genus are frequently due to the refraction caused by the vertical emargination of each side of the polar lobe.

Var. cephalophorum West. (Pl. XXXV, fig. 1.)

A variety with the lower interlobular incisions widely open, and the upper interlobular incisions narrowly linear; upper lateral lobes much smaller than the lower lateral lobes.

Length 155 μ; breadth 90 μ; breadth of isthmus 27 μ.

Scotland.—Near the Spittal of Glen Shee, Perth!
Var. depauperatum var. nov. (Pl. XXXIV, fig. 10.)

A variety with the interlobular incisions very shallow and widely open; polar lobe more rounded and lateral lobes very short.

Length 140 μ; breadth 63 μ; breadth of isthmus 17 μ.

IRELAND.—Near Glenties, Donegal!

We mentioned the occurrence of this form in the 'Alg. of N. Ireland,' 1902, p. 27.

Note.—E. oblongum var. integrum Benn. Alg. N. Cornwall, 1887, p. 16, t. 4, f. 18; Cooke, Brit. Desm. 1887, t. 66, f. 1 (from Bennett); De Toni, Syll. Algar. 1889, p. 1088. Bennett’s description of this form together with his bad figure make future identification of it impossible. The “protuberances” he mentions are such as are not found in any Euastrum of this group; neither is any form of E. oblongum known in which the polar lobe is entire. (Consult remarks under "E. crassum var. cornubiense," p. 8.)

(Pl. XXXV. figs. 3–7.)

?? Cosmarium fenestratum Corda, Almanach de Carlsbad, 1839, p. 243, t. 5, f. 29.

E. Didelta var. sinuatum Gay, Monogr. loc. Conj. 1884, p. 56, t. 1, f. 11.

E. Didelta b. tetricum Racib. Lc. t. 13, f. 3.

Heliocrella fenestrata Kuntze, Revis. gen. plant. 1891, p. 898.

Cells moderately large, twice or rather more than twice as long as broad, deeply constricted, sinus
narrowly linear with a dilated extremity; semicells pyramidate with a truncate apex and sinuate margins, sometimes almost five-lobed; basal angles broadly rounded, rounded-rectangular, or even retuse; lateral margins with two hollows, sometimes slight and sometimes fairly deep, often unequal; apical part of cell standing out as a polar lobe, subtruncate at the apex with rounded angles, and with a deep linear incision in the middle; semicells with three protuberances across the base and two across the middle. Side view of semicell elongate-pyramidate, basal angles subrectangular, somewhat wider above the base, then tapering upwards to the apex, which is truncate with rounded angles. Vertical view elliptical, with three protuberances on each side, the two upper protuberances which show in the middle of the lateral margin alternating with the three lower ones; polar lobe broadly elliptic. Cell-wall punctate.

Zygospore globose, furnished with numerous, blunt, somewhat curved papillae.

Length 130–195 µ; breadth 70–91 µ; breadth of isthmus 16–27 µ; thickness 42–45 µ; diam. zygosp. without papillae 73.6–86 µ; length of papillae 9–13 µ.

WALES.—Fairly general!

SCOTLAND! General! (Roy & Bissett). Zygospores at Dalwhing near Aboyne, Aberdeen (Roy & Bissett). Common in Outer Hebrides! Orkneys!

This is one of the most abundant of the large British species of Euastrium, and is subject to considerable variation in outward form. The sinuation of the lateral margins of the semicells varies very much, even in the semicells of the same plant. The form named "var. sinuatun" by Gay has therefore no claim to rank as a distinct variety. The form named "var. tatricum" by Raciborski is based on an error in Ralfs' "British Desmids." This is another species in which Ralfs failed to depict the surface protuberances correctly. The only protuberances on the semicell of any specimen of E. Didelta are three across the base, the middle one being immediately above the isthmus, and two across the centre.

Monstrosities of this Desmid are not uncommon; they have been figured by Archer in 'Proc. Dubl. Nat. Hist. Soc.,' 1859, p. 208, t. 1, f. 12; 'Nat. Hist. Rev.,' 1859, vi, p. 470, t. 33; by Bulnheim in 'Hewidgia,' 1861, p. 52, t. 9, f. 6; and by West & G. S. West in 'Ann. Bot.,' xii, 1898, t. iv, f. 39.

Some specimens possess a large scrobiculation beneath the two central protuberances; this form has been named "forma scrobiculata Nordst.," and is fairly general in its distribution.

7. Euastrium affine Ralfs.

Cells of medium size, somewhat less than twice as long as broad, very deeply constricted, sinus narrowly linear with a dilated extremity; semicells three-lobed with two intermediate lobules, sinuses between the lobes and the lobules deep and widely open; polar lobe outstanding, anvil-shaped, with rounded angles and a convex apex, and with a median linear notch of some
depth; lateral lobes subquadrate, with rounded angles and retuse sides; intermediate lobules mamillate and prominent; semicells with a large protuberance within each lateral lobe, and with four in the centre, two small ones immediately above the isthmus, and two larger ones immediately above them. Side view of semicell subquadrate in the lower half, with retuse sides; upper half pyramidate, with deeply retuse sides and a dilated, rounded-truncate apex; intermediate lobule emarginate; lateral lobes (at base) rhomboidal, with rounded angles and retuse sides. Vertical view elliptic, with four prominent protuberances along each side; intermediate lobules emarginate; polar lobe quadratelong, sides slightly convex, poles deeply emarginate. Cell-wall punctate.

Zygospore unknown.

Length 98–117 \(\mu \); breadth 53–64 \(\mu \); breadth of isthmus 17–18 \(\mu \); thickness 35–38 \(\mu \).

Wales.—General in Carnarvonshire (Glyder Fach at 2,200 ft.)! Dolgelly, Merioneth (Ralfs).

Scotland.—General, but not abundant! (Roy & Bissett). Outer Hebrides!

Ireland.—Donegal! Mayo! Galway! Kerry! Dublin and Wicklow (Archer).

E. affine is a very characteristic species and cannot be easily confused with any other. The disposition of the surface protuberances and the form of the polar lobe at once distinguish it from *E. Didelta*. It often occurs in quantity in upland *Sphagnum*-bogs, and is not infrequently associated with *E. ampullaceum*.

Nordstedt has described a "forma scrobiculata" of it, with a conspicuous central scrobiculation, but we have not observed this form from Britain.
S. *Euastrum ampullaceum* Ralfs.

(Pl. XXXV, figs. 8–10.)

Helierella ampullacea Kuntze, Revis. gen. plant. 1891, p. 598.

Cells of medium size, a little more than 1·5 times longer than broad, very deeply constricted, sinus narrowly linear and dilated at the extremity; semicells three-lobed; polar lobe cuneate and dilated, with rounded angles, apex convex with a deep and narrow median incision; lateral lobes much larger than the polar lobe, triangular with rounded basal angles, superior margin of the lobes with a mamillate projection, which is sometimes reduced to a rounded elevation; semicells with three protuberances across the base, the median one being emarginate, and with two across the centre, also with three conspicuous scrobiculations disposed between the five protuberances. Side view of semicell elongate-pyramidate, basal angles rectangular and basal part of margins slightly retuse, upper part of margins somewhat concave, apex rounded. Vertical view pointed-elliptic, with four protuberances on each side and a fifth between and beneath the two central ones; mamillate projection of lateral lobes widely emarginate; polar lobe rectangular, with subacute angles and retuse sides. Cell-wall finely scrobiculate.

Zygospore globose or ovoid-globose, ornamented with numerous mamillate projections.

Length 93–110 μ; breadth 57–59 μ; breadth of isthmus 14–17·5 μ; thickness 34–36 μ; diam. zygosp. without mamillate projections 54–72 μ; length of mamillae 5–6·4 μ.

England.—Cumberland! Westmoreland! (*Ralfs*).
W. and N. Yorks! Lancashire! Surrey! Sussex (Ralfs). Kent (Ralfs). Hants! (Ralfs). Devon! (Bennett). Wilts! Cornwall!

Wales.—General through Carnarvonshire (Glyder Fach at 2,200 ft.)! Dolgelly, Merioneth (Ralfs).

Scotland.—Sutherland!, Ross!, Inverness!, Aberdeen!, Kincardine!, Forfar!, Perth!, Argyle, Arran, Fife; zygospores near Cambus-o’-May, Aberdeen (Roy & Bissett). Skye (with zygospores)! Common in Outer Hebrides! Orkneys!

Ireland.—Donegal! Galway! Mayo! Kerry! Dublin and Wicklow (Archer). Down! Antrim!

This species is generally distributed throughout the Sphagnum-bogs of the British Islands. The general outline in front view and the form of the polar lobe, particularly in the vertical view, are absolutely characteristic. We have examined many thousands of British specimens, and find the three scrobiculations in the centre of the semi-cells very constant, this being the reason we have included Nordstedt’s “forma scrobiculata” with the type form. Ralfs did not accurately indicate the surface protuberances, and he remarks in his text that they were “indistinct.”

(Pl. XXXVI, fig. 1.)

Euastrum circulare Hass. var. β Ralfs, Brit. Desm. 1848, p. 85, t. 13, f. 5 a, b, and d.

Helierella sinuoso Kuntze, Revis. gen. plant. 1891, p. 899.
Cells small, about $1\frac{3}{4}$ times longer than broad, deeply constricted, sinus narrowly linear with a dilated extremity; semicells three-lobed; polar lobe prominent and outstanding, quadrate-cuneate, angles rounded, apex truncate with a narrow median incision of some depth; lateral lobes bilobulate, lobules rounded, separated by a widely-open sinus, the upper one not projecting so far out as the lower; semicells with three protuberances across the base and two across the centre. Side view of semicell pyramidate with a quadrate base, upper part of lateral margins slightly retuse, apex rounded-truncate. Vertical view elliptic, with three protuberances on each side, and the two central ones showing above and between them; polar lobe oblong-rectangular, poles retuso-emarginate. Cell-wall finely punctate, punctuations often scarcely visible.

Zygospore unknown.

Length 56–78 μ; breadth 35–46 μ; breadth of isthmus 9–15 μ; thickness 21–30 μ.

England.—Cumberland! Westmoreland! (Ralfs). W. and N. Yorks! Lancashire! Surrey! Hants! (Ralfs). Devon!

Wales.—Capel Curig, Snowdon, and Llyn-y-cwmffynnon, Carnarvonshire!

Scotland.—General, but rare (Roy & Bissett). Rhi-conich and Loch Culag, Sutherland! L. Luichart, Ross! Outer Hebrides! Shetlands!

Ireland.—Donegal! Galway! Kerry! Dublin and Wicklow (Archer).

Much confusion has existed concerning the nomenclature of this characteristic *Euastrum*. It has been referred by many authors to "*Euastrum circularis* Hass." as a variety, but the latter species does not exist, Hassall's figure being
most probably a very erroneous drawing of *Euastrum ansatum* Ralfs.

It is a variable species with regard to the depth of the sinuatioiis of the margins, and for this reason we have included "var. *Falesiensis* Bréb." as part of the type.

The five protuberances, three basal and two central, sometimes each possess a conspicuous central scrobiculation, and rarely, similar scrobiculations are found between the protuberances.

The zygospore of *E. sinuosum* var. *simplex* Mask. has been described and figured as "globose, with simple stout spines." Consult Maskell, ‘Further Notes New Zeal. Desm.’ 1888, p. 11, t. 1, f. 6.

Var. reductum West & G. S. West. (Pl. XXXVI, figs. 2, 3.)

Cells somewhat smaller than in the type, polar lobe not dilated, lateral lobules less prominent; in vertical view protuberances considerably reduced, and polar lobe quadrate-oblong without emarginate poles.

Length 46–59 μ; breadth 24–32·5 μ; breadth of isthmus 7·5–9·5 μ; thickness 15–18 μ.

England.—Thursley Common, Surrey!

Ireland.—Ballynahinch, Galway!

10. *Euastrum Jenneri* Arch.

(Pl. XXXVI, fig. 4.)

Euastrum circulare var. γ Ralfs, Brit. Desm. 1848, p. 85, t. 13, f. 5 c.

E. Jenneri Arch. in Pritch. Infus. 1861, p. 730.

This species differs from *E. sinuosum* in the broader polar lobes; in the larger lateral lobes, which are more quadrate, with equal lobules; and in the surface protuberances, of which there are eleven, a basal row
EUASTRUM.

23

of four, a median row of three, then a row of four across the upper part of the lateral lobes. Cell-wall punctate.

Zygospore unknown.

Length 72 μ; breadth 45 μ; breadth of isthmus 15 μ.

ENGLAND.—Westmoreland (Ralfs). Strensall Common, N. Yorks!

IRELAND.—Ballynahinch, Galway!

We have only seen this Desmid on two occasions and have not yet succeeded in obtaining side or vertical views. It may only be a variety of *E. sinuosum*, but this point cannot well be decided until the other views have been obtained.

(Pl. XXXVI, figs 5, 6.)

Cells small, about 1 ½ times longer than broad, very deeply constricted, sinus narrowly linear with a slightly-dilated extremity; semicells pyramidate-rounded (faintly subrectangular), lateral margins sinuate, with two shallow hollows and a somewhat broad rounded projection in between; apex subtruncate with rounded angles and a narrow median incision; semicells with a slight depressed protuberance above the isthmus and two others across the centre, also with 11–13 conspicuous scrobiculations disposed more or less in a regular pattern across the broad part of the semicell. Side view of semicells quadrate at the base, with rounded angles and retuse sides; upper portion shortly pyramidate with a rounded-truncate apex. Vertical view elliptic, with two slight protuberances in the middle of each side.

Zygospore unknown.
Length 58–65 μ; breadth 37–42 μ; breadth of isthmus 11.5–13 μ; thickness 24–25 μ.

Wales.—Capel Curig, and Llyn-y-cwm-ffynon, Carnarvonshire!

Scotland.—On Ben Muich Dhui, near Loch Etchachan, Aberdeenshire (Roy & Bissett).

Geogr. Distribution.—Finland.

E. aboense differs from *E. inerme* in its slightly larger size, in the relatively greater width of the semicells, in the rounded basal angles, and in the scrobiculations on the front of the semicells. The small thickened protuberance which is situated just above the isthmus in the semicells of *E. inerme*, is represented by a very slight protuberance in *E. aboense*. The side and vertical views also differ slightly. It is a species rarely met with.

(Pl. XXXVI, figs. 7, 8.)

E. inerme c. *Lundellii* Racib. l.c.

Cells small, subelliptic in outline, about 1.7 times longer than broad, very deeply constricted, sinus narrowly linear with a slightly-dilated extremity; semicells subpyramidate, basal angles obliquely truncate so that the widest part of the semicell is above the base; lateral margins with two slight hollows, having a broad, rounded projection between; apex slightly protracted, truncate, with a deep and narrow median notch; semicells with a small thickened protuberance in the middle immediately above the isthmus, having two small protuberances across the centre and a large scrobiculation between them. Side view of semicell pyramidate with a subquadrate base; lateral margins slightly retuse
near the base and also towards the apex, with a scrobiculation showing at the middle of the margin on each side; basal angles of semicell quadrate. Vertical view elliptic, with two protuberances on each side, and a third smaller one showing between and beneath them; also with the scrobiculation between the central protuberances on each side. Cell-wall very finely punctate.

Zygospore unknown.

Length 50–62 μ; breadth 30–40 μ; breadth of isthmus 7.5–13 μ; thickness 20–23.5 μ.

ENGLAND.—Loughrigg, Westmoreland (Bennett). Thursley Common, Surrey! Dartmoor, Devon!

SCOTLAND.—Sutherland!, Ross!, Inverness!, Aberdeen!, Kincardine, Forfar, Perth!, Argyll, Arran (Roy & Bissett). Often abundant in the Outer Hebrides!

IRELAND.—Loughs Clophfer and Machugh, and near Glenties, Donegal! Ballynahinch, Loughs Athry, Aunierin, and Derrycclare, Galway! Glengariff, Adrigole, and Castletown, Kerry!

E. inerme is a rare species in England and Wales, but often occurs in great abundance in the west of Scotland, the Outer Hebrides, and the west of Ireland. In these situations it is frequently associated with large numbers of *E. ventricosum*.

It is a species of definite and constant shape, with very characteristic markings, and it cannot well be mistaken for any other British species of the genus. Ralfs was greatly in error in associating it with *Euastrum elegans*, a species with which it has no close affinity.

13. **Euastrum cuneatum** Jenner.

(Pl. XXXVI, fig. 9.)

Cells moderately large, more than twice as long as broad, deeply constricted, sinus narrowly linear with the extremity dilated; semicells narrowly pyramidal, basal angles slightly rounded and often a little thickened, lateral margins almost straight (generally faintly sinuate), apical angles slightly rounded, apex truncate with a narrow and fairly-deep median incision; semicells without protuberances, or with a very slight swelling within each basal angle. Side view of semicell ovate-pyramidate, apex truncate and rounded. Vertical view broadly elliptic, lateral margins convex or very slightly triundulate. Cell-wall finely scrobiculate. Zygospore unknown.

Length 96–128 μ; breadth 47–59 μ; breadth of isthmus 13–22 μ; thickness 42 μ.

ENGLAND.—Cumberland! Westmoreland! (Bissett). W. and N. Yorks! Lancashire! Surrey! Sussex (Ralfs). Hants (Bennett).

WALES.—General throughout Carnarvonshire! Festiniog!, and Dolgelly (Ralfs), Merioneth.

SCOTLAND.—Sutherland, Ross, Inverness, Aberdeen!, Kincardine, Forfar, Perth!, Dumfriesshire (Roy & Bissett). Kirkcudbright! Outer Hebrides!

This characteristic species is often abundant amongst submerged *Sphagnum* in association with *E. ampullaceum*, *Commarium Cucurbita*, *Microasterias truncata*, *Eremosphera viridis*, and other Algae. We do not know of any near relatives to *E. cuneatum*. The broadly-truncate apices, pyramidal semicells, and absence of protuberances are all peculiar features.
The basal view of the semicell given by Ralfs (l.c. t. 32, f. 3b) is incorrect. We have examined hundreds of specimens of this species and the vertical view is broadly elliptic, occasionally exhibiting the merest trace of three undulations along each side.

(Pl. XXXVI, figs. 10–13.)

Didymidium (Euastrium) ansatum Reinsch, Algenfl. Franken, 1867, p. 130.

E. ansatum var. sublobatum Delp. Desm. subalp. 1873, p. 103, t. 6, f. 35–36.

Helierella circularis Kuntze, Revis. gen. plant, 1891, p. 698.

H. ansata Kuntze, l.c.

Cells somewhat small, about twice as long as broad, deeply constricted, sinus narrowly linear with a dilated extremity; semicells pyramidate with a broad base, basal angles rounded, lower part of lateral margins convex with a slight undulation above the basal angles, upper part of margins concave, apex rotundo-truncate, with a narrow and fairly deep median incision; semi-cells with a slight protuberance immediately above the isthmus and two rather larger ones across the centre. Side view of semicell elongate-pyramidate, with a protuberance just above the base on each side, upper part of margins concave, apex rounded. Vertical view elliptic, poles broadly triangular with rounded angles; with two protuberances in the middle on each side, and a third one between and beneath them; polar lobe broadly elliptic-oblong. Cell-wall punctate, punctulations in vertical lines.
Zygospore globose, ornamented with numerous bluntly-rounded (or abruptly-sharp-pointed) spines.

Length 70–91 μ; breadth 32–47 μ; breadth of isthmus 12–15 μ; thickness 26–29 μ; diam. zygosp. without papillae 38·4–55·5 μ; length of papillae 5·6–4·4 μ.

Wales. — General and abundant (at 2,200ft. on Glyder Fach, Carnarvonshire)!

Ireland. — General!

Scotland. — General and abundant! (Roy & Bissett). Outer Hebrides! Orkneys! Shetlands! Often in the plankton!

E. ansatum is one of the most generally distributed of the British species of the genus. The "Euastrum ansatum" described by Ehrenberg in 1832 is a Cosmarium which is now known to occur in several parts of the world. The "Euastrum ansatum" as known to all recent authors is the one originally described by Ralfs in his 'British Desmids,' and therefore Ralfs must be regarded as the authority for this species.

The Desmid partly described and figured by Hassall under the name of "Euastrum circulare" is most probably a form of E. ansatum, as was pointed out by Lundell in 1871. Hassall's description, however, is so poor and his figure so bad, that certain identification is impossible.

The zygospores observed by Roy appear to have differed somewhat from those we have ourselves observed. Roy describes the zygospores as furnished with numerous "short,
stout, abruptly-sharp-pointed spines,” whereas we find them covered with short, stout, blunt papillae.

The undulation at the sides of the semicells varies very much, so that we find it impossible to clearly define the “var. sublobatum” of Delponte.

Var. pyxidatum Delp. (Pl. XXXVI, figs. 14, 15.)

Semicells almost three-lobed owing to the large development of the undulation above the basal angles, upper portion of lateral margins deeply sinuate, “polar lobe” subquadrato with rounded angles.

Length 65–86 μ; breadth 33–42 μ; breadth of isthmus 12–14 μ; thickness 22–27 μ.

SCOTLAND.—“Common” (Roy & Bissett). We find it very rare!

IRELAND.—Galway!

Geogr. Distribution.—Poland. Italy.

15. **Euastrum obesum** Josh.

(Pl. XXXVI, figs. 16, 17.)

Helierella obesa Kuntze, Revis. gen. plant. 1891, p. 890.

Cells of medium size, about twice as long as broad, deeply constricted, sinus narrowly linear; semicells pyramidate, with broadly-rounded basal angles, lower part of lateral margins convex, upper part slightly concave, apex widely subtruncate with rounded angles having a narrow median incision. Side view of semicell ovate-pyramidate, apex rounded. Vertical view broadly elliptical, lateral margins very slightly biundulate. Cell-wall smooth.

Zygospore unknown.

Length 50–111 μ; breadth 30–59 μ; breadth of apex 17–28 μ; breadth of isthmus 9–21 μ.

ENGLAND.—Mossdale Moor, Widdale Fell, N. Yorks (large specimens)!

All the examples of this species which we have seen possessed a smooth cell-wall. Turner also found that Indian specimens had a smooth cell-wall; his measurements are:—length 58–65 μ; breadth 37–44 μ; breadth of isthmus 16-17 μ. Joshua describes the cell-wall as of "a faint flesh-colour, sometimes indistinctly granulated." His original measurements are:—length 50–80 μ; breadth 30–35 μ; breadth of isthmus 9–15 μ.

It is distinguished from *E. ansatum* by its relatively-greater breadth and by the broadly-rounded basal part of the semicells. There is also an absence of the longitudinal lines of punctuations which are such a characteristic feature of *E. ansatum*.

(Pl. XXXVII, fig. 1.)

Helierella pinguis Kuntze, Revis. gen. plant. 1891, p. 899.

Cells small, almost 1½ times longer than broad, very deeply constricted, sinus slightly open for more than half its length, then narrowed; semicells rounded-pyramidate, basal angles broadly rounded (faintly subrectangular) upper portions of lateral margins retuse; apex convexo-truncate, with a widely-open, shallow, median notch. Cell-wall scrobiculate; scrobiculations larger in the centre of the semicells, at the apex, and at the basal angles, causing these parts of the cell-wall to appear rough on the surface; with a larger, somewhat irregular scrobiculation in an excentric position near the centre of the semicells. Semicells with a small papilla at each basal angle at the beginning of the sinus; also with a large granule in the middle and close to the isthmus. Side view of semicell ovate, apex rounded, sides slightly retuse just below the apex; with a granule at each side at the base, close to
the isthmus. Vertical view elliptic, with rounded poles, slightly inflated in the middle on each side.

Zygospore unknown.

Length 56–60 μ; breadth 40–41 μ; breadth of apex 19–21 μ; breadth of isthm. 9·6–12 μ; thickness 26–28 μ.

SCOTLAND.—Near Cambus-o’-May, Aberdeen; Glen Clova, Forfar; Glen Coe, Argyll (Roy & Bisset). Rhiconich, Sutherland!

IRELAND.—Connemara, Galway (Archer).

Geogr. Distribution.—Finland. United States.

17. Euastrum insignе Hass.

(Pl. XXXVII, figs. 2–5.)

Didymidium (Euastrum) _insigne_ Reinsch, Algenfl. Franken, 1867, p. 130.

E. insignе c. _montanum_ Racib. l. c. t. 13, f. 1.

Helierella insignis Kuntze, Revis. gen. plant. 1891, p. 898.

H. mammillosa Kuntze, l. c. p. 899.

E. insignе var. _mammillosum_ (Wolle) Turn. Freshw. Alg. E. India, 1893, p. 79.

Cells of medium size, about twice as long as broad, deeply constricted, sinus widely open, narrowed towards the extremity; semicells widely deltoid in the basal portion, then narrowed into a neck, which widens again into an obversely-deltoid apex, basal and apical angles rounded, frequently with an undulation on the margin just above the basal angle, apex truncate with a narrow median incision; semicells with a large, sub-mamillate, downwardly-directed protuberance within
each basal angle, which projects over the edge of the sinus. Side view of semicell elongate-pyramidate, angles at base submamillate, lower part of sides convex, upper part of sides concave; with a dilated apex, the angles of which are bluntly mamillate and upwardly directed. Vertical view oblong-rectangular, with a conical-mamillate protuberance in the middle of each truncate pole, lateral margins retuse in the centre; polar lobe in the form of an oblique cross, the four processes of which are mamilliform. Cell-wall scrobiculate, scrobiculations larger at all the angles, the surfaces of which become rough (sometimes almost papillate).

Zygospore unknown.

Length 108-135 µ; breadth 57-70 µ; breadth of apex 29-37 µ; breadth of isthmus 13-15.5 µ; thickness 32-36 µ.

Wales.—Common in Carnarvonshire (up to 2,200 ft. on Glyder Fach) and Merioneth!

Scotland.—Sutherland!, Ross, Inverness!, Banff, Aberdeen!, Kincardine, Forfar!, Perth!, Argyll, Arran (Roy & Bissett). Harris and Lewis, Outer Hebrides!

Ireland.—Glen Caragh, Cromagloun, and Torc Mt., Kerry! Pool near Lough Glentornan, Donegal! Dublin and Wicklow (Archer).

This species is often abundant in mountain bogs and the boggy margins of mountain tarns, in which situations it is commonly found amongst the leaves of a submerged form of Sphagnum cuspidatum. It exhibits considerable variation in the length of the "neck" and in the form of the basal angles of the semicells. These variations are connected by every intermediate state, so that it is impossible to clearly define such forms as "var. montanum Racib." or "var. elegans Schmidle." The Desmid described and figured by Wolle
from the United States as "Euastrum mammillosum" is a bad illustration of a form of E. insigne. The plant that Wolle figures as E. insigne is now known as E. orientale Turn. Wolle never appeared to clearly understand the nature of Euastrum insigne Hass.

18. Euastrum intermedium Cleve.

(Pl. XXXVII, fig. 6.)

Helierella intermedia Kuntze, Revis. gen. plant. 1891, p. 898.

Cells small, almost 1½ times as long as broad, deeply constricted, sinus widely open but narrowed at the extremity; semicells three-lobed, with a large open sinus between the polar and lateral lobes; lateral lobes obtusely conical; polar lobe somewhat anvil-shaped, angles acutely rounded, apex convexo-truncate with a narrow median incision; semicells with two protuberances across the middle of the basal half (between the two lateral lobes), and with two very small protuberances on the polar lobe, one on each side of the median incision. Side view of semicell elongate-pyramidate, with a protuberance on each side near the base, lateral margins concave, and with a slight swelling on each side of the apex, which is rounded (or rounded-truncate). Vertical view elliptical, poles acutely rounded, with two prominent protuberances on each side near the middle; polar lobe elliptical, with two slight swellings on each side near the middle. Cell-wall smooth.

Zygospore unknown.

Length 54–68 μ; breadth 31–40 μ; breadth of apex 20–26 μ; breadth of isthmus 9–10 μ; thickness 20–25 μ.

England.—Cumberland (Bennett).
Scotlnd.—Loch Inver, Sutherland; Poolewe, Ross; South Birsemore, Aberdeen; Glen Clova, Forfar; Arnbathie Loch, Perth; Glen Coe, Argyll (Roy & Bisset). Rhiconich, Sutherland!

19. **Euastrum Webbianum** Turn.

(Pl. XXXVII, fig. 7.)

Euastrum Webbianum Turn. Freshw. Alg. E. India, 1893, p. 86 (forma major et minor), t. 22, f. 4; Turn. Desmid Notes, 1893, p. 343, f. 4 (forma major).

Cells rather small, about twice as long as broad, deeply constricted, sinus widely open but narrowed towards the extremity; semicells subpyramidate, with concave sides, and projecting, subconical (slightly upturned) basal angles, apex truncate with a narrow median incision. Cell-wall smooth.

Forma minor: length 26–30 \(\mu \); breadth 13–16 \(\mu \); breadth of isthmus 4 \(\mu \).

Forma major: length 58 \(\mu \); breadth 28 \(\mu \); breadth of isthmus 8 \(\mu \).

England.—Sutton Park, Warwick (forma major, Turner).

Geogr. Distribution.—N. India (forma minor).

This small "Euastrum," which has been but imperfectly described by Turner, appears to us as very probably two dislocated cells (each in an oblique position) from a filament of *Desmidium Swartzi* or some allied species.

20. **Euastrum Sendtnerianum** Reinsch.

(Pl. XXXVII, fig. 8.)

Didymidium (Euastrum) Sendtnerianum Reinsch, Algenfl. Frank. 1867, p. 135, t. 9, f. 4.

Helierella Sendtneriana Kuntze, Revis. gen. plant. 1891, p. 899.
Cells very small, about twice as long as broad, oblong-elliptic in outline, deeply constricted, sinus narrowly linear and dilated at the extremity; semi-cells semi-elliptic, with four undulations up each side and an emarginate apex. Side view of semicell ovate-elliptic; vertical view elliptic. Cell-wall smooth.

Zygospore unknown.

Length 23–27 μ; breadth 12–15 μ; breadth of isthmus 4 μ; thickness 6–8 μ.

Geogr. Distribution.—Germany. Galicia in Austria.

The typical form of this species is unknown in the British Islands. Gutwinski gives as the measurements of his Austrian specimens: length 29 μ; breadth 17 μ; breadth of isthm. 7 μ. The figure we give is exceedingly poor, but as it is an exact copy of Reinsch's original, this could only be expected.

Var. latius Roy & Biss.

Larger than the type, with broader apices.

Length 43.2 μ; breadth at base of semicells 25.6 μ, at apex 19.2 μ.

Scotland.—Near Den of Maidencraig, Aberdeen (Roy & Bissett).

We are unacquainted with this variety and are unable to give a figure of it.

(Pl. XXXVII, figs. 11–13.)

Cells small, a little more than 1½ times longer than broad, very deeply constricted; sinus narrowly linear,
dilated at the extremity and slightly open outwards; semicells subpyramidate in outline, more or less three-lobed; polar lobe quadrato-cuneate, apex convex with a deep and open median notch, a short, blunt spine at each outer angle, and a thickening at each angle of the apical notch; lateral lobes bilobulate, upper lobule rounded and submamilliform, or subquadrate and emarginate, upwardly directed, lower lobule emarginate or bluntly tridentate, horizontally disposed; semicells with a large protuberance in the centre above the isthmus, a large rounded wart on each side of the apical incision and near the base of the polar lobe, a small wart within each lower lateral lobule, and one or two small granules within both upper and lower lateral lobules. Side view of semicell ovate-pyramidate, apex rounded, with a prominent protuberance on each side near the base, and a wart on each lateral margin half-way between the basal protuberance and the apex. Vertical view elliptic, with angular poles and a large protuberance in the middle on each side. Cell-wall smooth.

Zygospore globose, furnished with simple, blunt spines. Length 39-49 μ; breadth 25-35·5 μ; breadth of isthmus 6·5-8 μ; thickness 20-24 μ.

WALES.—Capel Curig, Carnarvonshire (Roy). Dolgelly, Merioneth (Ralfs).

SCOTLAND.—General but scarce! (Roy & Bissett).

IRELAND.—Mayo! Galway! Kerry! Dublin and Wicklow (Archer).

This is a somewhat rare British species with very distinctive characters, one of the most prominent being the large smooth protuberance in the centre near the base of each semicell. The large warts on either side of the apical incision, and near the base of the polar lobe, are also very characteristic, but were overlooked by Ralfs. In fact, the description of this Desmid given by Ralfs is very incomplete, and has caused many observers to go astray with regard to the exact identity of *E. rostratum*.

The *Euastra* figured by Wolle, 'Desm. U. S.' t. 27, figs. 8 and 9, as "*E. rostratum*" do not belong to this species.

Note.—*E. rostratum* var. *cumbricum* Benn. Freshw. Alg. Eng. Lake Distr. II, 1888, p. 5, t. 1, f. 13. It is impossible to say with certainty that Bennett's variety belongs to *E. rostratum*. His figure is too crude and the apex of the semicell is most extraordinary. It would appear to differ principally in the uniformity of the lobulation and the widely excavated apex. Length 45–50 μ; breadth 25 μ.

(Pl. XXXVII, figs. 9, 10.)

Cells small, about 1½ times longer than broad, deeply constricted, sinus narrowly linear with a dilated extremity; semicells pyramidal, more or less three-lobed; polar lobe short and very broad, oblong-rectangular, lateral margins retuse, apical angles furnished with a short divergent spine, apex truncate, with four undulations and a narrow median incision; lateral lobes bilobulate, both upper and lower lobules truncato-emarginate; semicells with a small tumour in the centre ornamented with a ring of granules. Cell-wall furnished with a number of granules within the polar and lateral lobes. Side view of semicell ovate pyramidal, apex acute, with a truncate granulate protuberance near the base on each side. Vertical view elliptic,
poles acutely rounded, with a truncate granulate protuberance at the middle on each side.

Zygospore unknown.
Length 39–50 μ; breadth 28–33 μ; breadth across polar lobe 20–23 μ; breadth of isthmus 7–9 μ; thickness 18–20 μ.

England.—Hampsfell, Lancashire!
Scotland.—Rhiconich, Sutherland! Aboyne, Aberdeen!
Ireland.—Near Glenties and Lough Nacally, Donegal! Derrycclare Lough, Galway!

Geogr. Distribution.—Australia.
This species differs from *E. denticulatum* (Kirchn.) Gay in its larger size, in the form of the polar lobe, and in the bilobulate condition of the lateral lobes.

(Pl. XXXVII, figs. 14, 15.)

Cells small, almost $1\frac{3}{4}$ times longer than broad, deeply constricted, sinus narrowly linear; semicells pyramidate, with convex sides which are gently sinuate, bearing one or two denticulations on the basal situation, and a short, upwardly-directed spine on each of the other two sinuations, apex rounded-truncate, with a rather deep and narrow median incision; semicells with a quadriverrucose protuberance in the middle above the isthmus, a wart-like granule on each side of the apical incision, and a number of small granules or fine denticulations within the marginal sinuations and at the apex. Side view of semicell ovate-pyramidate, apex rounded, with a small emarginate protuberance at the base on each side, lateral margins undulate.
Vertical view elliptic, with pointed and denticulate poles, lateral margins granulate or denticulate, and with a broad emarginate protuberance at the middle on each side.

Zygospore globose, furnished with numerous, rather bluntly-pointed spines.

Length 28–38.5 μ; breadth 18–23 μ; breadth of isthmus 5.5–6.5 μ; thickness 12.5–13.5 μ; diam. zygosp. without spines 26–30 μ; length of spines 7.5–9.6 μ.

ENGLAND.—Cornwall (Ralfs).
WALES.—Dolgelly (Ralfs).
IRELAND.—Dublin and Wicklow (Archer).

We think *E. spinosum* Ralfs possesses sufficiently distinctive characters to allow of its remaining as a distinct species. The gently-sinuate margins of the semicells, the absence of any trace of a "neck," and the spines on the lateral margins, distinguish it from ordinary forms of *E. elegans*. Ralfs also states that the zygospore possesses more slender and more numerous spines than that of *E. elegans*.

The *Euastra* figured by Wolle, ‘Desm. U. S.’ t. 27, figs. 4–7, as "*E. spinosum*" do not belong to this species.

24. Euastrum bidentatum Näg.

(Pl. XXXVII, figs. 16–19.)

Cells small, about 1½ times longer than broad, deeply constricted, sinus narrowly linear with a dilated extremity; semicells subpyramidate, with bilobulate
sides; lower lobule subrectangular, sometimes emarginate, and furnished with two or three sharp granules; upper lobule rounded or rounded-truncate, rarely emarginate, sometimes furnished with one or with two sharp granules; apex convex, sometimes slightly undulate, with a deep median notch, which may be somewhat open or closed, with a short, blunt spine at each apical angle, and usually with a thickening at the angles on each side of the apical incision; semicells with a granulated protuberance in the centre above the isthmus (number and disposition of granules variable), with a large granule below and on each side of the apical incision (sometimes absent), and with a few variously-disposed granules within the lateral lobules and the apex. Side view of semicell ovate, with a protuberance (usually emarginate) on each side near the base, and a granule on each side higher up on the lateral margins; apex rounded and tridenticulate. Vertical view elliptic, with a protuberance (emarginate or trigranulate) at the middle on each side, poles furnished with acute granules or denticulations.

Zygospore globose, furnished with numerous strong simple spines, most of which are curved.

Length 51–61 μ; breadth 32–39 μ; breadth of apex 25–29 μ; breadth of isthmus 6·3–11 μ; thickness 21–23 μ; diam. of zygosp. without spines 40–42·5 μ; length of spines 10–13 μ.

Wales.—General throughout Carnarvonshire (at 2,200 ft. on Glyder Fach)!

Scotland. — Common! (Roy & Bissett). Outer Hebrides! Orkneys! Shetlands!

Ireland.—General!

E. bidentatum Næg. is a species well differentiated from E. elegans by its lobulate margins, its larger and more depressed apices, and its ornamentation. It is also larger than most forms of E. elegans, although it is connected with that species by E. elegans var. Novæ Semliææ and E. elegans var. ornatum.

It is generally distributed all over the British Islands, and retains its distinctive characters in a very constant manner. Almost the only variation met with is in the form of the lateral lobules and in the disposition of the surface ornamentation. The central protuberance varies much in the number and arrangement of its granules. The figures given by Nægeli are fairly good in outline, but he does not indicate the markings which are always present on this species.

Most probably the figure of E. elegans in Ralfs' 'Brit. Desm.,' t. 14, f. 7a, is a form of this species.

25. Euustrum pictum Börg.

(Pl. XXXVIII, fig. 1.)

Cells relatively small, a little more than 1½ times longer than broad, deeply constricted, sinus narrowly linear with a dilated extremity; semicells subquadrate, three-lobed; polar lobe short and much dilated, apex convex and undulate, with an open median incision, apical angles furnished with a short, strong spine; lateral lobes bilobulate, upper lobule small and furnished with two small teeth, lower lobule larger and furnished with three small teeth; semicells in centre with a large granulate protuberance, and with smaller granulate protuberances within each lateral lobule and each half of the polar lobe. Vertical view elliptic, poles denticulate, and with a median granulated protuberance on each side.

Zygospore unknown.

Length 72 μ; breadth 43 μ; breadth of isthmus, 11 μ; thickness, 27 μ.

Geogr. Distribution.—Brazil. United States (var).

Absolutely typical forms of E. pictum do not occur in the British Isles. Those already recorded (consult West, 'Alg.
W. Ireland, 1892, p. 139), and others that we have seen, bear a striking resemblance to large forms of \(E. \) bidentatum Nag. They differ from \(E. \) pictum in having the lateral teeth reduced to acute granules, and in the replacement of the special, granulated protuberances by single large granules. They would be almost equally well placed under \(E. \) bidentatum, except for their size and additional protuberances.

Length 79 \(\mu \); breadth 52 \(\mu \); breadth of isthmus 14 \(\mu \).

(Wales.—Moel Siabod and Llyn Ogwen, Carnarvonshire!
Scotland.—Rhiconich, Sutherland!
Ireland.—Lakes near Recess, Oorid and Ardererry Loughs, Galway! Glen Caragh, Lough Guitane, Castletown and Carrantuohill, Kerry!

(Pl. XXXVIII, figs. 3, 4.)

Helierella divaricata Kuntze, Revis. gen. plant. 1891, p. 598.

Cells small, \(1\frac{1}{4} \) times longer than broad, very deeply constricted, sinus narrowly linear with a dilated extremity; semicells subtriangular, rapidly attenuated to the convexo-truncate apex, more or less three-lobed; polar lobe very broad, rectangular-oblong, each apical angle furnished with a small spine, median incision deep and open; lateral lobes bilobulate, upper lobules widely triangular and rounded, lower lobules truncate-rounded, furnished with a denticulation at the entrance to the sinus and with a horizontal or upwardly-diverging spine; semicells with a protuberance in the middle above the isthmus, biverrucose, triverrucose, or granulate, with a large rounded granule on each side of the apical incision at the base of the polar lobe, and with about four granules within the lateral margins and two within the apex. Side view of semicell ovate, apex furnished with a small spine, and with a granulate or emarginate protuberance at each side near the base.
Vertical view elliptic, with a spine at each pole, and a granulate or emarginate protuberance at the middle on each side.

Zygospore unknown.

Length 36–45 μ; breadth 31–36 μ; breadth of isthmus 6–7 μ; thickness 16–19 μ.

SCOTLAND.—Glen Coe, Argyll (Roy and Bissett). Loch Iron Sineur, Perth! (J. Murray). Rhiconich, Sutherland!

This is a very rare species in the British Islands and has essentially a western distribution.

27. Euastrum dubium Näg.

(Pl. XXXVIII, figs. 5–8.)

Euastrum binale Ralfs, Brit. Desm. 1848, t. 14, f. 7 d.
E. binale (Turp.) Ehrenb. var. _rotundata_ Istvanffi, Diag. præv. Alg. nov. Hungar. 1887, p. 236 (according to Istvanffi).

Cells very small, 1½ times longer than broad, very deeply constricted, sinus narrowly linear with a slightly-dilated extremity; semicells truncato-pyramidate, five-lobed; polar lobe short, oblong-rectangular, apex truncate with a narrow median incision, apical angles furnished with a small conical granule; upper lateral lobes rounded; lower lateral lobes very slightly larger than the upper ones, rounded, obliquely truncate, or sometimes slightly emarginate; semicells with two granules within the apex, one on each side of the notch, with two faint granules within each basal angle, often with a faint granule below the apical notch, and with a slight trace of a smooth central protuberance.
Side view of semicell ovate-oblong, apex acutely rounded, very slightly dilated on each side at the base. Vertical view elliptic-oblong, poles acute, and with a very slight swelling (sometimes absent) at the middle on each side.

Zygospore unknown.

Length 26·5–33 μ; breadth 19–21 μ; breadth of isthmus 4–6 μ; thickness 10–12·5 μ.

England.—Westmoreland! N., W., and E. Yorks! Lancashire! Lincolnshire! Essex! Wilts! Surrey! Devon! Cornwall!

Wales.—Bogs above Capel Curig, Glyder Fach at 2,200 ft., near Llyn Idwal, Y Foel Fras, and Rhyddu, Carnarvonshire!

Scotland.—General! (Roy f Bissett). Up to 3,500 ft. on Lochnagar, Aberdeenshire! Common in the Outer Hebrides! Orkneys! Shetlands!

Ireland.—Donegal! Mayo! Galway! Kerry! Dublin and Wicklow (Archer). Down!

We gave full reasons for considering *Euastrum erosum* var. *notabile* as identical with *E. lobulatum* Bréb., in the ‘Journal of Botany,’ 1900, p. 290, and in the ‘Alga-flora of Yorkshire,’ p. 63. We also think that *E. lobulatum* is correctly identified with Nägeli’s *E. dubium*, which was described seven years previously. Nägeli’s figures are not good, but there can be no question that they represent the same plant as that described and figured by Brébisson under the name of *E. lobulatum*.

It is a widely distributed species and is found in the boggy districts of every part of the British Islands.

It is easily distinguished from *E. binale* by its relatively greater length, its equal lobulation at the sides, and by the markings on the semicells.

Var. *anglicanum* (Turn.) *nob.* (Pl. XXXVIII, fig. 9.)

Euastrum anglicanum Turn. Desm. Notes, 1893, p. 343, fig. 6.

Apex of semicells convexo-truncate, apical incision open; with a few scattered granules within the lateral
lobes, and with five granules arranged on a central protuberance.

Length 36 μ; breadth 22 μ; breadth of isthmus 6 μ.

ENGLAND.—Trelleck Common, Monmouth (Turner).

Var. cambrense (Turn.) nob. (Pl. XXXVIII, fig. 10.)

Upper lateral lobes furnished with a short, upwardly-directed spine; with six granules forming a ring on the central protuberance.

Length 32 μ; breadth 20 μ; breadth of isthmus 5 μ; thickness 9·5 μ.

WALES.—Near Dolbadarn Castle, Carnarvonshire (Turner).

Var. Snowdoniense (Turn.) nob. (Pl. XXXVIII, fig. 11.)

Cell-wall of lateral lobes and polar lobe thickened at the margin; apical notch open; with three small protuberances (?) forming a triangle in the centre of the semicell.

Length 31 μ; breadth 20 μ; breadth of isthmus 6·5 μ.

WALES.—Snowdon, Carnarvonshire (Turner).

28. **Euastrum erosum** Lund.

(Pl. XXXVIII, figs. 12, 13.)

Cells very small, $1\frac{1}{2}-1\frac{3}{4}$ times longer than broad, deeply constricted, sinus narrowly linear; semicells somewhat hexagonal, the base broader than the remaining sides, angles rounded, lower portions of lateral margins parallel and retuse, upper portions converging
towards the apex, and retuse, apex truncate and retuso-emarginate. Side view of semicell quadrate-rectangular, with attenuated poles which are 3-crenulate. Vertical view subrectangular, with slightly convex sides, poles broadly truncate and 3-crenulate. Cell-wall smooth.

Zygospore unknown.

Length 32–39 μ; breadth 20–23 μ; breadth of isthmus 7.5–8.5 μ; thickness 11–16 μ.

ENGLAND. — Westmoreland (Bissett). Mickle Fell, N. Yorks! Hants, Devon, and Cornwall (Bennett).

WALES. — Capel Curig and Pen-y-gwrydd, Carnarvonshire (Roy).

SCOTLAND. — Ross, Inverness!, Aberdeen, Kincardine, Forfar, Perth, Argyll and Arran (Roy & Bissett).

IRELAND. — Dublin and Wicklow (Archer).

E. erosum differs from *E. dubium* in the character from which the species derives its name, viz., the crenulated poles of the side and vertical views. It is also less lobed, with a less deep apical incision, and is completely destitute of any granulation on the surface.

29. Euastrum pulchellum Bréb.

(Pl. XXXVIII, figs. 14, 15.)

Helicella pulchella Kuntze, Revis. gen. plant. 1891, p. 899.

Cells small, about 1½ times longer than broad, very deeply constricted, sinus narrowly linear with a slightly-dilated extremity; semicells more or less three-lobed, with a shallow sinus between the lobes; polar lobe widely rectangular-oblong, apex truncate with a deep and narrow median incision, apical angles furnished with a short diverging spine; lateral lobes rounded
quadrate, ornamented with 6–8 acute granules (3–4 marginal); semicells with a triverrucose protuberance in the centre above the isthmus, a large rounded granule on each side of the apical incision, and often a small granule at each angle of the apical incision. Side view of semicell ovate-oblong, with an emarginate protuberance at each side near the base, and a rounded granule at each side near the apex, apex rounded and furnished with a spine. Vertical view oblong, with rounded denticulate poles, and an emarginate protuberance in the middle on each side.

Zygospore unknown.

Length 37–40 µ; breadth 28–33 µ; breadth of isthmus 7–8 µ; thickness 19–20 µ.

England.—Bowness, Westmoreland! Riccall Common, E. Yorks! New Forest, Hants! Tremethick Moor, Cornwall!

Scotland.—Sutherland!, Ross, Aberdeen, Kincardine, Forfar, Perth, Argyll (Roy & Bissett). Harris and Lewis, Outer Hebrides!

Ireland.—Dungloe, Loughs Gartan and Machugh, Sproule’s Lough, Donegal! Lough Derryleclare and Oughterard, Galway!

Geogr. distribution.—France.

Brébisson’s figure of *E. pulchellum* is a very poor one and is inaccurate in its details. We find the species scarce but widely distributed in the British Islands.

Perhaps the figure given by Wolle, ‘Desm. U. S.’ t. 27, f. 9, of *E. rostratum* belongs to this species.

Var. retusum nov. var. (Pl. LXIV, fig. 17.)

Lateral lobes less protuberant, broader, and slightly retuse on their outer margin, with the upper angles emarginate; polar lobe with a convex apex and with the median notch widely open.

Length 40 µ; breadth 26 µ; breadth of isthmus 7·5 µ.

England.—Bowness, Westmoreland!

(Pl. XXXVIII, figs. 16–21.)

Heterocarpella elegans Bréb. in Cheval. microscop. et usage, Paris, 1839, p. 72 (name only).

E. declive Roy in Bates' Flora Leicestershire, 1886, p. 35.

Cells very small, about $1\frac{1}{2}$ times longer than broad, deeply constricted, sinus narrowly linear; semicells ovate-pyramidate, basal angles subrectangular, retuse-emarginate, above with the sides concave, superior angles apiculate, apex strongly convex (or broadly rounded) with a deep and narrow median incision; semicells with a triverrucose or a granulate protuberance in the centre above the isthmus, the rest of the cell-wall generally smooth. Side view of semicell ovate, with a truncately-rounded apex, and an emarginate protuberance on each side above the base. Vertical view elliptic, with acute poles, and an emarginate protuberance in the middle on each side.

Zygospore globose, furnished with simple acute spines.

Length 29–36·5 μ; breadth 19–22 μ; breadth of isthmus 5·8–7 μ; thickness 10–14·5 μ; diam. of zygosp. without spines 20–29 μ; length of spines 7·5–9·5 μ.

EUASTRUM.

Kent! Hants (zygospores from New Forest)! (Ralfs). Devon! Cornwall! (Ralfs).

WALES.—Generally distributed!

SCOTLAND.—Generally distributed! zygospores at Slewdrum, Aberdeen (Roy & Bissett). Outer Hebrides! Orkneys! Shetlands!

IRELAND.—Common.

E. elegans is one of the most widely-distributed British species of the genus. It can always be recognised by its broadly-rounded apices with a deep median incision, and by the truncate-retuse basal angles. It is a small smooth species with a well-marked central protuberance, which is usually split into three warts.

The zygospore occurs frequently and is covered with simple, blunt spines.

Var. pseudelegans (Turn.) nob. (Pl. XXXVIII, figs. 22, 23.)

Euastrum pseudelegans Turn. New and Rare Desm. 1885, p. 935, t. 15, f. 8; De Toni, Syll. Alg. 1889, p. 1102; West, Alg. N. Wales, 1890, p. 287.

Helierella pseudelegans Kuntze, Revis. gen. plant, 1891, p. 899.

Basal angles of semicells broadly rounded, with a number of depressed granules within the margins and near the centre of the semicells.
Length 40 \(\mu\); breadth 25·5 \(\mu\); breadth of isthmus 7 \(\mu\).

WALES.—Capel Curig. Carnarvonshire.

Geogr. Distribution.—United States.

Var. Novæ Semliæ Wille. (Pl. XXXVIII, figs. 24, 25.)

Cells slightly larger than in the type; semicells with
obliquely-truncate or acutely-rounded basal angles, and with an undulation between the basal angle and the upper apiculation; central protuberance triverrucose or granulate; semicells sometimes with a few granules within the marginal undulations.

Length 36·5–53 \(\mu \); breadth 22·5–34 \(\mu \); breadth of isthmus 3·8–9 \(\mu \); thickness 15–24 \(\mu \).

SCOTLAND.—Near Tarbert, Harris, Outer Hebrides!

IRELAND.—Slieve Donard, Down!

Geogr. Distribution.—Nova Zembla.

Var. ornatum West. (Pl. XXXVIII, fig. 26.)

Cells slightly larger than in the type; basal angles furnished with a granule and also with one just within the margin, with an undulation between the base and the upper apiculation on each lateral margin; with six large rounded granules in the centre of the semicells near the base (in 2 series of 3) and with one on each side of the apical incision.

Length 45–47 \(\mu \); breadth 28–29 \(\mu \); breadth of isthmus 8–10 \(\mu \); thickness 14–17·5 \(\mu \).

ENGLAND.—Harrop Tarn, Cumberland! Stickle Tarn and Bowness, Westmoreland!

WALES.—Glyder Fach, Carnarvonshire!

SCOTLAND.—Glen Shee, Perthshire!

Geogr. Distribution.—United States.

This is a very characteristic variety differing materially from other forms of *E. elegans* in the six central granules.

Var. ornithocephalum (Benn.) *nob.* (Pl. XXXVIII, fig. 27.)

Cells somewhat larger than in the type: almost twice as long as broad, basal angles rounded and
laterally expanded, with an undulation between the base and the upper apiculation on each side.

Length 57 µ; breadth 30 µ.

England. — Loughrigg, Westmoreland (Bennett). New Forest, Hants (Bennett).

31. Euastrum binale (Turp.) Ehrenb.

(Pl. XXXVIII, figs. 28, 29.)

Cosmarium binale (Turp.) Menehgh. Synops. Desm. 1840, p. 221.

Helierella binalis Kuntze, Revis. gen. plant. 1891, p. 598.

Euastrum binale forma a. minuta Turn. Freshw. Alg. E. India, 1893, p. 81 t. 10, f. 50 (Ralfs l.c. f. 8 e).

E. binale forma b. ventricosa Turn. l.c. p. 81 (Ralfs, l.c. f. 8 b).

Cells minute, about 1\(\frac{1}{3}\) times longer than broad, deeply constricted, sinus narrowly linear; semicells subpyramidal, basal angles broadly rounded, entire, upper part of lateral margins concave; apex broad and truncate, retuso-emarginate in the middle, upper angles dilated to form a minute apiculus. Side view of semicell ovate, apex acutely rounded, with a slight protuberance near the base on each side. Vertical view elliptic, poles acute, with a small, rounded protuberance at the middle on each side. Cell-wall smooth.

Zygospore globose, furnished with simple, somewhat blunt spines.

Length 15–30 µ; breadth 12·5–21 µ; breadth of isthmus 3–8·5 µ; thickness 9–13 µ; diam. zygosp. without spines 20–26 µ; length of spines 5–7 µ.

England. — Cumberland! Westmoreland! (Ralfs). W., N., and E. Yorks (zygospores from Widdale Fell,

Wales.—General and abundant (up to 2,700 ft. on Glyder Fawr, Carnarvonshire)!

Scotland.—General and abundant! (Roy & Bissett). Up to 3,500 ft. on Lochnagar! Outer Hebrides! Orkneys! Shetlands!

Ireland.—Abundant!

E. binale is generally distributed all over the British Islands, and numerous varieties of it exist. _The semicells of the type-form possess rounded and entire basal angles, and the apex is truncate and slightly retuse-emarginate in the middle._ Forms of _E. binale_ should never be confused with forms of _E. elegans_ on account of the very different apices. In _E. elegans_ the apex is broadly rounded with a deep median incision, but in _E. binale_ the apex is truncate and retuse in the middle.

Forma minor West.

Cells very minute, about half the average size of the type.

Length 10–12 μ; breadth 7.5–11 (rarely to 12) μ.

England.—Adel Bog, W. Yorks, and Pilmoor, N. Yorks! Puttenham Common, Surrey!

Wales.—Capel Curig, Carnarvonshire! Ffestiniog, Merioneth!

Ireland.—Not uncommon!

Geogr. Distribution.—United States.
Forma secta Turn. (Pl. XXXVIII, fig. 30.)

E. binale forma _secta_ Turn. Freshw. Alg. E. India, 1893, p. 81, t. 10, f. 35, 39, 47; t. 11, f. 5. [[= _E. binale_ forma c. lobis basalibus sinuato-bilobulatis Lund. Desm. Suec. 1871, p. 23; _E. binale_ Ralfs, l.c. t. 14, f. 8c.]

Basal angles of semicells truncato-retuse (or sinuato-bilobulate).

Length 20–28 μ; breadth 16–21 μ; breadth of isthmus 6–8 μ.

England.—Westmoreland! W. and N. Yorks! Lancashire! Surrey! Hants! Devon! Cornwall!

Wales.—Capel Curig and Llyn-y-cwm-fynon, Carnarvonshire!

Scotland.—General! (Roy & Bissett).

Ireland.—General, but scarce!

Forma hians West. (Pl. XXXVIII, fig. 33.)

E. binale forma _hians_ West, Alg. W. Ireland, 1892, p. 140, t. 20, f. 14
West & G. S. West, Obs. on Conj. 1898, t. 4, f. 38; Alga-fl. Yorks. 1900, p. 64.

Basal angles of semicells subacute, obliquely truncate towards the sinus.

Length 11–16 μ; breadth 10–12·5 μ; breadth of isthmus 2·5–3·5 μ; thickness 6–7 μ.

England.—Near Cockley Beck, Lancashire! Keighley Moor, W. Yorks! Skipwith Common, E. Yorks! Dartmoor, Devon!

Ireland.—Ballynahinch and Lakes near Recess, Galway! Near Foxford, Mayo!

Geogr. Distribution.—Germany. Ceylon.

Forma Gutwinskii Schmidle. (Pl. XXXVIII, figs. 31, 32.)

Lappmark Stisswasseralgen, 1898, p. 44.
E. binale forma, Schmidle, Beitr. Algenfl. Rheineb. u. Schwarzwald. 1895,
p. 79, t. 1, f. 13, 14.
Basal angles of semicells triundulate or slightly tricrenate.
Length 22–29 μ; breadth 14–20 μ; breadth of isthmus 4·8–5·5 μ; thickness 11–12 μ; diam. zygosp. without spines 27–29 μ; length of spines 3·8–9·5 μ.

England.—Helvellyn, Westmoreland! Mossdale Moor, Widdale Fell, N. Yorks (with zygospores)!

Scotland.—Moidart, Inverness! Rhiconich, Sutherland! Near Kirkwall, and Hoy, Orkneys!

Wales.—Bog below Llyn Idwal, Carnarvonshire!

Ireland.—Near Foxford, Mayo!

Var. retusum West. (Pl. XXXVIII, fig. 34.)

Basal angles of semicells obliquely truncate-retuse; apex broadly truncate-retuse; cell-wall finely granulate-punctate; central protuberance broadly rounded and granulate.
Length 27 μ; breadth 21 μ; breadth of isthmus 8 μ; thickness 12 μ.

England.—Kirk Fell, Westmoreland!

Var. elobatum Lund. (Pl. XXXVIII, fig. 35.)

Cells hexagonal; semicells pyramidate, apices as in type, lateral margins with a median undulation between the base and the apex.
Length 21–28 μ; breadth 15·5–20·5 μ; breadth of isthmus 4–5 μ; thickness 11 μ.

England.—Bassenthwaite Water and Borrowdale, Cumberland! Helvellyn and Brothers Water, Westmoreland! Penyghent, W. Yorks! Strensall Common, Mickle and Cronkley Fells, N. Yorks! Riccall Common,
EUASTRUM.

E. Yorks! Near Cockley Beck, Lancashire! Esher West-end Common, Surrey!

WALES.—Bethesda, Capel Curig, and Snowdon, Carnarvonshire! Ffestiniog and Dolgelly, Merioneth!

SCOTLAND.—Loch Inver, Sutherland; Poolewe, Ross; near Alford, Ballater and Aboyne, Aberdeen (Roy & Bissett). Ben Chiurn, Glas Maol, and Craigan Lochan, Perth!

IRELAND.—Dungloe, Lough Nacung and Glentornan, Donegal! Ballynahinch and Derryclare Lough, Galway!

Note.—Euastrum Lundellii Benn. Freshw. Alg. Engl. Lake Distr. 1886, p. 9, t. 1, f. 13. (Helierella Lundellii Kuntze.) Bennett stated that this plant was the same as E. binale var. elobatum Lund., but his figure certainly disproves this statement. We have never seen anything approaching Bennett's figure and doubt very much if his plant could have belonged to the genus Euastrum.

Var. subelobatum West. (Pl. XXXVIII, fig. 36.)

E. binale subsp. subelobatum West, Alg. W. Ireland, 1892, p. 140, t. 20, f. 15; West & G. S. West, Alga-fl. Yorks. 1900, p. 64.

Cells somewhat hexagonal; semicells with truncate-emarginate basal angles and an undulation on each lateral margin between these angles and the apex; side view of semicell subrhomboid with rounded angles and undulate sides; vertical view rhomboid-elliptic with rounded angles and undulate sides.

Length 26 μ; breadth 18 μ; breadth of isthmus 5 μ; thickness 12·5 μ.

ENGLAND.—Oughtershaw Tarn, W. Yorks! Baugh Fell, Cronkley Fell, and Craydale Moor, N. Yorks!

IRELAND.—Lough Aunierin, Galway! Lough Guitane, Kerry.

This variety is at once distinguished from var. elobatum by the truncate-emarginate basal angles of the semicells. The side and vertical views also differ in outline. It is a very uncommon variety, but perhaps it has been overlooked.
32. *Euastrum denticulatum* (Kirchn.) Gay.
(Pl. XXXIX, figs. 1–4.)

Euastrum binale var. β Ralfs, Brit. Desm. 1848, t. 14, f. 8 a and f.

E. amnenum Gay, Monogr. loc. Conj. 1884, p. 53, t. 1, f. 7.

Cells very small but rather variable in size, about 1½ times as long as broad, very deeply constricted, sinus narrowly linear with a dilated extremity; semi-cells subquadrate or subpyramidate, almost trapezoid, basal angles rounded or subrectangular, furnished with a number of granules or denticulations, upper part of lateral margins concave, apical part of semicell protracted, broadly rectangular, upper angles furnished with an acute granule or short spine, apex truncate with a slight median notch (sometimes only retuse-emarginate); semicells with a granulated central protuberance, and a number of granules or denticulations within the basal angles and the apex. Side view of semicell ovate, with an acute apex, and an emarginate or granulated protuberance at each side near the base. Vertical view elliptic, poles acute, with an emarginate or granulated protuberance at the middle on each side.

Zygospore unknown.

Length 13–26 μ; breadth 11·5–21 μ; breadth of isthmus 3·5–6·5 μ; thickness 7·5–14 μ.

ENGLAND.—Cumberland! Westmoreland! W., N., and E. Yorks! Lancashire! Surrey! Kent! Hants! (Roy). Devon! Cornwall!

WALES.—Frequent through Carnarvonshire (up to 2,200 ft. on Glyder Fach)! Dolgelly, Merioneth!

SCOTLAND.—Generally distributed! (Roy & Bissett). General in the Outer Hebrides! Orkneys! Shetlands!
IRELAND.—Donegal! Mayo! Galway! Kerry! Down! Armagh! Londonderry!

This species is generally distributed and often abundant. It varies much in size and in the form of the basal angles, but always retains its distinctive features. We have made no attempt to classify the numerous forms which exist.

Var. granulatum West. (Pl. XXXIX, fig. 5.)

Superior angles of semicells without an acute tooth; cell-wall finely granulate all over the surface.

Length 18 μ; breadth 18 μ; breadth of isthmus 4 μ; thickness 9 μ.

IRELAND.—Ballynahinch, Galway!

33. *Euastrum minutissimum* nob.

(Pl. XXXVIII, fig. 37.)

Euastrum exile Turn. Desm. Notes, 1893, p. 346, f. 21 [not *E. exile* Josh. 1886].

Cells very minute, almost twice as long as broad, deeply constricted, sinus narrowly linear; semicells oblong-pyramidate, basal angles rounded, lateral margins retuse, apex rounded, with a median, somewhat open notch. Side view of semicell ovate-pyramidate, apex rounded, lateral margins retuse. Cell-wall smooth.

Zygospore unknown.

Length 15 μ; breadth 8 μ; breadth of isthmus 3 μ; thickness 4 μ.

WALES.—Snowdon, Carnarvonshire (*Turner*).

We have never observed this minute species, but have been
compelled to give it a new name owing to the existence of a Burmese *Euastrum* which was described by Joshua in 1886 as *E. exile*.

34. *Euastrum incavatum* Josh. & Nordst.

(Pl. XXXIX, figs. 6, 7.)

Cells small, $1\frac{3}{4}$ times longer than broad, very deeply constricted, sinus narrowly linear; semicells pyramidate from a dilated base, basal angles rounded or somewhat obliquely truncate, gradually attenuated to the apex, which is dilated, upper part of lateral margins retuse, apical angles acute and horizontally subapiculate; apex convex, suddenly and deeply retuse in the middle; semicells with a small tubercle within each of the basal and apical angles. Side view of semicell ovate. Vertical view elliptic. Cell-wall smooth.

Zygospore unknown.

Length 35–43 μ; breadth 20–24 μ; breadth of isthmus 4.5–6 μ; thickness 14–16 μ.

ENGLAND.—Mickle Fell, N. Yorks!

We have only observed this small species on one occasion. It is sharply defined by reason of its relatively great length and its peculiar apex.

(Pl. XXXIX, figs. 8, 9.)

C. *Subreinschii* Schmidle var. *Boldtiana* Schmidle in Flora, 1894, p. 90, t. 6, f. 8; West & G. S. West, Alga-fl. Yorks. 1900, p. 80; Alg. N. Ireland, 1902, p. 36.

Cells very small, a little more than 1½ times longer than broad, deeply constricted, sinus narrowly linear.
with a somewhat dilated extremity; semicells oblong-rectangular, lateral margins convex and biundulate, the upper undulation larger than the lower one; apex slightly protracted, truncate and emarginate in the middle, apical angles rectangular. Side view of semicell ovate, with a rounded protuberance on each side near the base. Vertical view elliptical, with a rounded protuberance at the middle on each side. Cell-wall smooth.

Zygospore unknown.

Length 20-4-27 μ; breadth 15-6-20 μ; breadth of apex 10-8-14-3 μ; breadth of isthmus 3-5-4-8 μ; thickness 11-5-14-5 μ.

England.—Scawfell Pike, Cumberland! Helvellyn and Blea Tarn, Westmoreland! Hawkshead, Lancaster! Keighley Moor, W. Yorks! Bog near Widdale Beck, and Snaizeholme Fell, N. Yorks!

Wales.—Bog above Capel Curig lakes, Glyder Fach (at 2,200 ft.), Llyn-y-cwm-ffynon, and Llyn Teyrn on Snowdon, Carnarvonshire!

Scotland.—Rhiconich, Sutherland! Clova, Forfar! Crianlarich, Perth! Moidart, Inverness! W. of Kirkwall, Orkneys!

Ireland.—Poisoned Glen and Lough Nacung, Donegal! Achill Island, Mayo! Near Oughterard, Galway! Carrantuohill, Kerry!

Geogr. Distribution.—Bernese Alps. Greenland.

We always find this small Desmid as an inhabitant of upland districts, and it retains its characters very constantly. It has been known for some time past as Cosmarium Subreinschii var. Boldtiana Schmidle, differing from typical C. Subreinschii in the larger and broader central protuberances, in the relatively wider and more angular apices, and in the apical notch.

Considering that so far as is known typical C. Subreinschii does not occur in the British Islands, whereas the Desmid in question is widely distributed and of constant character, we think there is every reason for its specific separation. Not only do we think it is better regarded as a separate species, but we regard the distinct apical emargination, accompanied by a large central protuberance, as characters which must place it in the genus Euastrum.
The specific name "Boldtii" could not be used as it has already been utilised by Schmidle for a species occurring in Germany, Russia, and Greenland.

36. Euastrum pectinatum Bréb.

(Pl. XXXIX, figs. 10-12.)

Heterocarrella pectinata Bréb. in Cheval. Microscop. et usage, Paris, 1839, p. 272 (name only).

Cosmarium pectinatum Bréb. in Menegh. Synops. Desm. 1840, p. 222.

Didymidium (Euastrum) pectinatum Reinsch, Algenfl. Frank. 1867, p. 123.

Cells of medium size, about $1\frac{1}{2}$ times as long as broad, deeply constricted, sinus narrow and generally slightly open; semicells three-lobed; polar lobe dilated, anvil-shaped, angles rounded, apex convexo-truncate and slightly retuse in the middle; lateral lobes sub-quadrate, deeply retuse at the outer margin, angles acutely rounded; semicells with three large protuberances across the broadest part, and with two protuberances within the polar lobe (one on each side). Side view of semicell widely inflated below, then constricted and widening out into a dilated subtruncate apex; angles of polar and lateral lobes bilobulate. Vertical view elliptic-oblong, poles bimamillate, with three large rounded-conical protuberances on each side; polar lobe elliptic oblong, poles bimamillate, and with two rounded-conical protuberances at each side. Cell-wall finely punctate (sometimes almost smooth).

Zygospore globose or oblong-ellipsoid, furnished with many elongated, blunt papilæ.

Length 69–73 μ; breadth 44–47 μ; breadth of polar lobe 32–35 μ; breadth of isthmus 11.5–12 μ; thickness 33–36 μ; diam. of globose zygosp. without papilæ
EUASTRUM. 61

52–57 μ; length of oblong zygosp. 50–73 μ; breadth 35–40 μ; length of papillae 3–5.7 μ.

ENGLAND.—Cumberland! Westmoreland! (Ralf’s). W., N., and E. Yorks (zygospore from Adel Bog, W. Yorks)! Lancashire! Cheshire (Ralf’s). Essex! Surrey (zygospores from Thursley Common)! Sussex (Ralf’s). Kent! Hants! (Ralf’s). Wilts! Devon! (Bennett). Cornwall (zygospores from Gunwen Moor)! (Ralf’s).

WALES.—Generally distributed and often abundant!

SCOTLAND.—Very common!, zygospores from Slewdrum and Albagie, Aberdeen (Roy & Bissett). Outer Hebrides (zygospores not uncommon)! Orkneys! Shetlands!

IRELAND.—Common (zygospores from Ballynahinch, Galway)!

E. pectinatum is very widely distributed in all parts of the British Islands, but the type form is not so abundant as var. inevolutum. The bluntly-conical protuberances of this Euastrum are very characteristic and are best seen from the vertical view. The angles of the polar lobe and the upper and lower angles of the lateral lobes are bilobulate, so that in the vertical view there are two conical protuberances at each pole, both of the lower part of the semicell and of the polar lobe. Thus, the outline in vertical view shows ten protuberances in the lower part of the semicell and eight in the polar lobe.

The zygospores are more frequently met with than those of any other Euastrum.

Var. inevolutum West & G. S. West (Pl. XXXIX, figs. 13–15.)

Cells a little smaller than in the type; lateral lobes generally more quadrate, outer margins only slightly retuse; neck of polar lobe relatively broader and shorter; apex of polar lobe more convex and retuse in the middle, apical angles more rounded; protuberances
of lower part of semicell and particularly of polar lobe much reduced (as seen in vertical view).

Length 51–63 μ; breadth 36–42 μ; breadth of polar lobe 24–28 μ; breadth of isthmus 10–11·5 μ; thickness 21–26 μ.

ENGLAND.—More frequent than the type!
WALES.—General in Carnarvonshire!
SCOTLAND.—General and abundant!
IRELAND.—General and abundant!

E. pectinatum forma intermedia Boldt (‘Desm. Grönland,’ 1888, p. 6, t. 1, f. 3) comes very near this variety, but in Boldt’s form the polar lobe is very small and its lateral margins are almost vertical. Boldt does not state whether the protuberances are reduced in his form or not, whereas this is one of the leading features in var. inevolutum. In the latter variety the angles of the polar lobe and the lateral lobules are broadly truncate or truncate-emarginate in vertical view, scarcely bilobulate as in the type.

Var. brachylobum Wittr. (Pl. XXXIX, fig. 16.)

Lobes of semicell broad and very short, margins widely retuse; semicells with six protuberances, one in the centre, one within the middle of the polar lobe, and one within each angle of the lateral lobes; poles of vertical view simple and rounded (not emarginate).

Length 70 μ; breadth 50 μ; breadth of polar lobe 32 μ; breadth of isthmus 15 μ; thickness 33 μ.

SCOTLAND.—“Not so common” (Roy & Bissett).

Geogr. Distribution.—Sweden.

We have never seen any form of E. pectinatum at all approaching var. brachylobum Wittr.

Ralfs in his ‘British Desmids’ describes and figures a form (p. 86, t. 14, f. 5c) which he calls “var. β.” He states that the angles of the polar lobe are slightly emarginate in front view, but it must be remembered that this effect is produced when the cell is in a slightly-oblique position, and his figure undoubtedly gives one the idea that this was the case.
37. Euastrum gemmatum Bréb.

(Pl. XXXIX, fig. 19.)

Cosmarium gemmatum Bréb. in Menegh. Synops. Desm. 1840, p. 221.

Euastrum gemmatum Bréb. in Ralfs, Brit. Desm. 1848, p. 87, t. 14, f. 4

Helicella gemmata Kuntze, Revis. gen. plant. 1891, p. 898.

Cells rather small, almost $1\frac{1}{2}$ times as long as broad, very deeply constricted, sinus narrowly linear with a dilated extremity; semicells three-lobed; polar lobe short, somewhat cuneiform, with rounded angles and a retuse apex; lateral lobes subquadrate, lateral margins deeply retuse, angles broadly rounded; semicells with three prominent protuberances across the broadest part, one in the centre, and one within each lateral lobe. Side view of semicell with the lower part widely inflated, then narrowed to form a neck, which widens out, forming a dilated apical portion, apex retuse, apical angles rounded. Vertical view elliptic, with three large rounded protuberances at each side; polar lobe subquadrate (almost cruciform) with deeply retuse sides and rounded angles. Cell-wall finely granulate, granules especially prominent on all the rounded angles and protuberances.

Zygospore unknown.

Length 48–70 μ; breadth 38–47 μ; breadth of isthmus 12–14 μ; thickness 26–30 μ.

Wales.—Capel Curig! (Cooke & Wills) and Glyder Fawr (Roy), Carnarvonshire.

Scotland.—Sutherland! Ross, Inverness, Aberdeen,
Kincardine, Forfar, Perth! (Roy & Bissett). Outer Hebrides! Shetlands!

E. gemmatum is one of the prettiest and most characteristic species of the genus. It is widely distributed, but somewhat scarce.

(Pl. XL, fig. 1.)

Helierella verrucosa Kuntze, Revis. gen. plant. 1891, p. 899.

Cells moderately large, subhexagonal, a little longer than broad, deeply constricted, sinus open for half its length and then narrowly linear; semicells three-lobed, interlobular incisions deep but open; polar lobe widely cuneate, angles rounded and granulate, apex deeply retuse; lateral lobes wider than polar lobe, cuneate and bilobulate, lower lateral lobule subconical, rounded, granulate and horizontally directed, upper lateral lobule submamilate, granulate, upwardly and outwardly diverging; semicells with three large protuberances across the broadest part, the central one being the largest, each protuberance furnished with large wart-like granules arranged in concentric circles. Cell-wall granulate, granules most evident at the angles where
they are often sharp and conical. Side view of semi-cell widely inflated in the lower part owing to the verrucose central protuberances showing at each side, then narrowed to form a "neck"; apical portion dilated, angles rounded, apex retuse. Vertical view elliptic, poles mamillate and granulate, with three large sub- verrucose protuberances on each side, upper and lower lateral lobules entire; polar lobe oblong-rectangular, with retuse sides and rounded angles.

Zygospore unknown.

Length 93–114 μ; breadth 75–92 μ; breadth of isthmus 19–22 μ; thickness 53–55 μ.

Wales.—Capel Curig! (Cooke & Wills), Llyn Ogwen!, Glyder Fawr (Roy), Carnarvonshire.

Scotland.—Generally distributed! (Roy & Bissett). Frequent in the plankton! Shetlands!

Ireland.—Donegal! Mayo! Galway! Kerry! Dublin and Wicklow (Archer). Armagh! Londonderry!

E. verrucosum is not so abundant as some of the other large species of Euastrum. It is not often found in bogs, having a decided preference for the margins of large, reedy ponds and lakes. It cannot easily be confused with any other species of the genus.

Var. reductum Nordst. (Pl. XL, figs. 2, 3.)

Cells rather smaller than in the type; polar lobe subrectangular, angles rounded, apex faintly retuse; lateral lobes retuse, scarcely bilobulate, angles rounded; interlobular incisions widely open, subrectangular; protuberances within the lateral lobes much reduced, scarcely evident in the vertical view; vertical view of polar lobe rectangular with straight sides.

Length 80–89 μ; breadth 70–86 μ; breadth of isthmus 18.5–22 μ; breadth of polar lobe 29–36 μ; thickness 36–42 μ.

Scotland.—Plankton of Lochs Tay and Achray, Perth! Plankton of Loch Ruar, Sutherland! (J. Murray). General in the plankton in Inverness, Lewis, and Harris, Outer Hebrides! Plankton of Neugles Water, and of Loch Beosetter, Bressay, Shetlands!

Ireland.—Lough Gartan, Donegal!

Var. coarctatum Delp. (Pl. XL, fig. 4.)

Cells slightly smaller than in the type, sinus generally more closed; polar lobe prominent, exserted, apex only slightly retuse; lateral lobes scarcely bilobulate, widely retuse.

Length 92.5–97 μ; breadth 85–87 μ; breadth of polar lobe 31–35 μ; breadth of isthmus 20–23 μ.

Ireland.—Derryclare Lough, Galway!

Geogr. Distribution.—Galicia in Austria. Poland. Italy.

A form of this variety is figured in which the upper angles of the lateral lobes are much reduced, and the polar lobe appears still more prominent; length 90 μ; breadth 76 μ; breadth of polar lobe 32.5 μ; breadth of isthmus 21 μ (Pl. XL, fig. 5). This form was originally figured in West, 'Alg. W. Ireland,' 1892, t. 20, f. 11.
Var. alatum Wolle. (Pl. XL, fig. 6.)

Cells with the outer half of the sinus open and then partially closed again, causing the basal angles of the semicells to have a hooked appearance.

Length 84–110 μ; breadth 71–108 μ; breadth of isthmus 22 μ; thickness 41 μ.

Scotland.—Tarbert, Harris, Outer Hebrides!

Ireland.—Cloonee Lough, Kerry!

Var. planctonicum West & G. S. West. (Pl. XL, fig. 7.)

Cells with a widely open sinus; lateral lobes entire, obtusely conical.

Length 90 μ; breadth 91 μ; breadth of isthmus 19·5 μ.

Scotland.—In the plankton of Lochs Ruar and Nan Cuinne, Sutherland! (J. Murray).

This remarkable variety occurred plentifully in the plankton of Loch Ruar. A few specimens were observed in which there was a slight indication of the presence of the superior lateral lobules.

39. Euastrum occidentale West & G. S. West.

(Pl. XXXIX, fig. 20.)

Euastrum verrucosum Ehrenb. var. simplex Josh. New and Rare Desm. 1885, p. 34, t. 254, f. 2; West, Alg. N. Wales, 1890, p. 287.

E. verrucosum Ehrenb. var. simplex Josh. forma tumescens Turn. Freshw. Alg. E. India, 1893, p. 74, t. 11, f. 98.

Cells of medium size, about 1½ times longer than broad, deeply constricted, sinus narrowly linear with a dilated apex; semicells truncate-pyramidate, broadly
rounded (very slightly subrectangular), superior part
of lateral margins retuse, apex somewhat protracted,
convex-truncate and retuse-emarginate in the middle,
superior angles rounded. Side view of semicell ovate-
truncate. Vertical view elliptic, poles slightly angular,
with a very slight inflation at the middle on each side.
Cell-wall finely granulate, granules much reduced
in the centre of the semicells, and quite absent at and
just below the apical emargination, often with an arc
of larger granules in the middle of the semicells about
two-thirds the length from the base.

Zygospore unknown.
Length 85–89 μ (rarely only 65 μ); breadth 71–72 μ
(rarely only 60 μ); breadth of apex 33–37 μ (rarely
only 27 μ); breadth of isthmus 20 μ; thickness 36–42 μ.

Wales.—Llyn Coron, Anglesey!

We have only once observed this Euastrum from the
British Islands, but have examined numerous specimens from
Nova Scotia, Maine, and Massachusetts. Fig. 20, Pl. XXXIX,
is the first accurate figure of this Desmid published, and so
that there should be no doubt as to its identity the drawing
was made from one of Joshua's original specimens.

99) suggests a relationship between E. occidentale and Cosmo-
rium Turpinii Bréb., but the latter is considerably smaller,
with two small central protuberances, and without an emargi-
nate apex. We know C. Turpinii very well, as it is frequent
in some parts of the British Islands, and it never has such a
protracted apex as E. occidentale.

E. occidentale has very little in common with E. verrucosum.
For the reasons for adopting the specific name "occidentale"

40. Euastrum insulare (Wittr.) Roy.

(Pl. XL, figs. 11–13.)

Euastrum binale (Turb.) Ehrenb. var. insulare Wittr. Goth. Öl, sötv.
Alg. 1872, p. 49, t. 4, f. 7; Arch. in Quart. Journ. Micr. Sci. 1873,
p. 434; Cooke, Brit. Desm. 1886, p. 76, t. 35, f. 10; De Toni, Syll. Alg.
1889, p. 1085; West, Alg. W. Ireland, 1892, p. 140; Johns. Rare Desm.
U. S. 1894, p. 256, t. 211, f. 8.

E. insulare (Wittr.) Roy in Scott. Naturalist, April 1877; July, 1883;
Roy & Biss. Scott. Desm. 1893, p. 177; West & G. S. West, Alg. S.
EUASTRUM.

Cosmarium insulare (Wittr.) Schmiele, Chlorophy-Fl. Torfstiche Virnheim, 1894, p. 59.

Cells minute, $1\frac{1}{2}$ times longer than broad, deeply constricted, sinus narrowly linear, with a dilated extremity; semicells three-lobed, interlobular incisions subrectangular; polar lobe widely rectangular, angles rounded, apex truncate and retuse-emarginate in the middle; lateral lobes short, basal angles subrectangular, sides slightly retuse. Side view of semicell ovate, with a slight protuberance on each side. Vertical view elliptic, with a very slight protuberance at the middle on each side. Cell-wall smooth.

Zygospore unknown.

Length 17.5–30 μ; breadth 11.5–22 μ; breadth of isthmus 3.3–6 μ; thickness 9.5–11.5 μ.

ENGLAND.—Westmoreland! (Bissett). N. Yorks! Lincolnshire! Cambridgeshire (Wicken Fen)! Hants! (Roy). Devon! Cornwall (Bennett).

WALES.—Llyn Bodrie, Anglesey! Frequent in Carnarvonshire!

SCOTLAND.—Sutherland! Ross! Inverness, Aberdeen, Kincardine, Forfar, Perth!, Argyll (Roy & Bissett). Outer Hebrides!

IRELAND.—Near Glenties, Loughs Anna and Akibbon, Donegal! Lower Lake of Killarney, Kerry! Dublin and Wicklow (Archer). Lough Derryadd, Armagh!

This small and characteristic species is widely distributed and sometimes occurs in abundance. It was originally described as a variety of Euastrum binale, but the distinctly three-lobed semicells and the rectangular basal angles sufficiently characterize it.

A form of it was described from Cambridgeshire (vide G. S. West, ‘Alga-fl. Cambr.’ 1899, p. 114, t. 396, f. 11) in which the lateral lobes were less rectangular and almost bilobulate. Length 28 μ; breadth 19 μ; breadth of isthmus 5 μ; thickness 11 μ (Pl. XL, fig. 14).
(Pl. XXXIX, fig. 17.)

Cells minute, $\frac{1}{3}$ times longer than broad, deeply constricted, sinus narrowly linear; semicells quadrate-pyramidate, angles slightly rounded, basal angles sub-rectangular, upper part of lateral margins retuse, apex broadly truncate and retuse-emarginate in the middle; semicells with a protuberance in the centre, and a smaller one within each basal and apical angle. Side view of semicell broadly ovate, upper part of lateral margins slightly retuse, apex truncate. Vertical view elliptic, with a slight protuberance at the middle on each side. Cell-wall thickened at all the angles of the semicells.

Zygospore unknown.

Length 27 μ; breadth 18 μ; breadth of isthmus 5 μ; thickness 13 μ.

Geogr. Distribution.—Austria (var.). Brazil.

The typical form is not known to occur in the British Islands.

Var. *ornatum* West. (Pl. XXXIX, fig. 18.)

E. crassangulatum var. *ornatum* West, Alg. W. Ireland, 1892, p. 140, t. 20, f. 16.

Semicells with 5 granules around the central protuberance and one in the middle, and with 6 others at regular intervals within the margins.

Length 27 μ; breadth 17.5 μ; breadth of isthmus 4.5 μ; thickness 14 μ.

Ireland.—Ballynahinch, Galway!

42. *Euastrum Cornubiense* *sp. nov.*
(Pl. XL, fig. 8.)

Cells minute, about $1\frac{1}{3}$ times longer than broad, very deeply constricted, sinus narrowly linear with a dilated extremity; semicells three-lobed, incisions between the
lobes widely subrectangular; polar lobe broadly rectangular, angles rounded, apex convex with a strong median thickening; lateral lobes short, angles rounded, outer margins reteuse; semicells with a central papillate protuberance. Side view of semicell elliptic, with an acute papilla at the middle on each side. Vertical view elliptic, with an acute papilla at the middle on each side. Cell-wall smooth and slightly thickened at the base of all the sinuations.

Zygospore unknown.

Length 24 μ; breadth 15 μ; breadth of isthmus 3·8 μ; thickness 11·5 μ.

England.—Near Senens, Cornwall!

This species forms one of the connecting links between the genera Euastrum and Cosmarium. There is no actual emargination of the apex of the semicells, although there is a thickened internal ridge occupying its place. It might equally well be called Cosmarium Cornubiense West & G. S. West.

43. Euastrum crassicolle Lund.

(Pl. XL, figs. 9, 10.)

Heliocrella crassicollis Kuntze, Revis. gen. plant. 1891, p. 898.

Cells minute, about twice as long as broad, deeply constricted, sinus narrowly linear; semicells truncate-pyramidate, almost three-lobed; polar lobe prominent, wide, slightly dilated, angles rounded, apex emarginate; lateral lobes very short, somewhat bilobulate with rounded angles. Side view of semicell oblong-pyramidate, apex truncate, lateral margins towards the base biundulate. Vertical view elliptic, poles truncate, and with a broad inflation at the middle on each side. Cell-wall smooth.

Zygospore unknown.

Length 24·5–28 μ; breadth 13·5–15 μ; breadth of isthmus 5·2–8·5 μ; thickness 9·5–11 μ.

England.—Mickle Fell, N. Yorks!
Wales.—Capel Curig and Llyn Padarn, Carnarvonshire! Dolgelly, Merioneth!

Scotland.—Poolewe, Ross; Presswhin and Bogwartle in Cromar, and Glen Ey, Aberdeen; Canlochan, Rannoch, Perth (Roy & Bissett). Craig an Lochan, Perth! New Galloway, Kirkcudbright!

Ireland.—Dublin and Wicklow (Archer).

The side view of this species easily distinguishes it from any other Euastrum. It seems to be chiefly a northern species.

44. Euastrum crispulum (Nordst.) nov.

(Pl. XL, figs. 15–18.)

? E. binale (Turp.) Ehrenb. var. elongatum Lüt kem. Desm. Attersees, 1892, p. 559, t. 8, f. 11.

Cells minute, about 1½ times longer than broad, deeply constricted, sinus narrowly linear with a dilated extremity; semicells pyramidate-truncate, basal angles rounded, with a slight undulation above the basal angles, upper part of lateral margins retuse; apex widely truncate, distinctly emarginate in the middle, that part on each side of the apical emargination distinctly retuse, apical angles acutely rounded. Side view of semicell ovate, slightly narrowed near the rounded apex. Vertical view elliptical with a broad inflation at each side. Cell-wall smooth.

Zygospore unknown.

Length 25–28 μ; breadth 16–20 μ; breadth of apex 9–11 μ; breadth of isthmus 3·5–7·5 μ; thickness 12·5–15 μ.

England.—Loughrigg, Westmoreland! Thursley Common, Surrey! Withiel, Cornwall!
ScOTLAND.—Rhiconich, Sutherland! Lewis, Outer Hebrides!

IRELAND.—Ballynahinch, Kylemore, and Roundstone, Galway!

The Desmid we described from Ireland as *Euastrum pyramidatum* is identical in every respect with that described by Nordstedt from Norway as *Euastrum sublobatum* var. *crispulum*. It is a very constant species, easily distinguished from *E. sublobatum*, and we have therefore placed it as *Euastrum crispulum*.

It is smaller than *E. sublobatum*, the semicells are pyramidal (not quadrat), and the undulations above the basal angles and the undulated character of the apex are features which are never present in *E. sublobatum*. In the vertical and side views the central inflation of *E. crispulum* appears very much smaller than that of *E. sublobatum*.

45. *Euastrum sublobatum* Bréb.

(Pl. XL, fig. 19.)

Euastrum sublobatum Bréb. in Ralfs’ Brit. Desm. 1848, p. 91, t. 32, f. 4; Nordst. Index Desm. 1896, p. 245.

Ursinella sublobata Kuntze, Revis. gen. plant. 1891, p. 925.

Cells small, about 1.5 times as long as broad, deeply constricted, sinus narrowly linear with a widely-dilated extremity; semicells subquadrate, lateral margins retuse, basal angles rounded, superior angles more acutely rounded, apex convex-truncate, retuse-emarginate in the middle. Side view of semicell ovate, with a large protuberance on each side near the base, upper part of lateral margins retuse, apex rounded; vertical view elliptic, with a large protuberance in the middle on each side, giving it a subcruciform appearance. Cell-wall smooth.

Zygospore unknown.
Length 26·5–48 μ; breadth 20–39 μ; breadth of apex 19–26 μ; breadth of isthmus 5·2–12·5 μ; thickness 18–21 μ.

England.—Borrowdale and Scarf Gap Pass, Cumberland! Westmoreland! (Ralfs). Ogden Clough, Penyghent, Oughtershaw Tarn, and Cautley Spout, W. Yorks!

Wales.—Bettws-y-coed, Twll Du, and Llyn Teyrn on Snowdon, Carnarvonshire! Dolgelly, Merioneth (Ralfs).

Scotland.—Sutherland!, Ross, Inverness, Aberdeen, Kincardine, Forfar, Perth, Argyll (Roy & Bissett).

Ireland.—Lough Fea, Londonderry! Dublin and Wicklow (Archer).

We think this Desmid is better regarded as a species of *Euastrum* rather than of *Cosmarium* on account of the retuse-emarginate apex of the semi-cells, with which is associated a relatively large central protuberance. It is essentially an upland species.

Var. dissimile Nordst. (Pl. XLV, fig. 7.)

Cells less deeply constricted, the breadth of the isthmus being about two-thirds that of the cell. Angles of semicells dissimilar; in vertical view with the superior angles truncate and the inferior angles retuse. Side view of semicell broadly truncate-pyramidate, with a small basal tumour.

Length 26–28·5 μ; breadth 17–20 μ; breadth of isthmus 12–13 μ; thickness 13–14 μ.

Scotland.—Loch Luichart, Ross!

Ireland.—Dublin and Wicklow (Archer).

Geogr. Distribution.—Italy.

Var. subdissimile var. nov. (Pl. XL, fig. 20.)

Cells with a broader isthmus; semicells with larger
basal angles, the retuse portion of the lateral margin being nearer the apex; apex widely convex and retuse-emarginate in the middle. Side view of semicell quadrate-pyramidate, inferior and superior angles rounded, sides and apex retuse. Vertical view oblong-rectangular, angles rounded, poles retuse, with a prominent protuberance at the middle on each side; polar lobe rectangular, angles round, sides and poles retuse.

Length 34.5 μ; breadth 22 μ; breadth of apex 18 μ; breadth of isthmus 9.5 μ; thickness 17 μ.

SCOTLAND.—Near Tarbert, Harris, Outer Hebrides!

This variety somewhat resembles the previous one, but the general outline of the semicells is rather different, and the side and vertical views differ greatly in the amount of the retuseness of the poles.

46. *Euastrum validum* West and G. S. West.

(Pl. XL, figs. 21, 22.)

Cells minute, 1 1/3 times longer than broad, very deeply constricted, sinus narrowly linear with a dilated extremity; semicells truncate-pyramidate, lateral margins retuse, inferior angles inflated, superior angles somewhat rounded and sometimes slightly thickened; apex broad, truncate-convex, emarginate and thickened in the middle; semicells with a small papilla within each basal angle, a large granule in the middle, close to the isthmus, and a small scrobiculation near the centre. Side view of semicell ovate, with a granule near the isthmus on each side; vertical view elliptic, with a small papilla on either side of each pole. Cell-wall smooth.

Zygospore unknown.

Length 26.5–30 μ; breadth 19–22 μ; breadth of apex 13.5–14.5 μ; breadth of isthmus 4.4–4.5 μ; thickness 10–11 μ.

SCOTLAND.—Rhiconich, Sutherland! Loch Diracleet, near Tarbert, Harris, Outer Hebrides!

This species is on the border-line between the genera *Euastrum* and *Cosmarium*, but we are inclined to retain it in the former genus on account of the distinctly emarginate apices.

It has two near relatives in *Cosmarium subbinale* (Nordst.) Lagerh. and *C. miedzyrzecense* Eichl. & Gutw., neither of which are known to occur in Britain.

NOTE.—In his 'Freshw. Alg. Eng. Lake Distr.' 1886, Bennett figures very roughly a Desmid which he terms "*Euastrum crenatum* Kütz." His short description and his outlined figure do not agree, however, with Kützing's description of *E. crenatum*. What Bennett's plant was we do not know, neither is the information he gives concerning it of sufficient value to establish a species. It seems to us that it might *possibly* be a form of *Cosmarium tetragonum* Näg.

Genus 14. MICRASTERIAS Ag., 1827.

Ag. in Flora, 1827, p. 642.
Ralfs, Brit. Desm. 1848, p. 68.
De Bary, Conj. 1858, pp. 39, 40, 47, 50, 70.
Arch. in Pritch. Infus. 1861, pp. 720, 725.
De Toni, Syll. Alg. 1889, p. 1109.

Cells of variable size, often large, usually a little longer than broad, sometimes subcircular in general outline, *usually much compressed*, very deeply constricted in the middle, sinus usually linear (open outwards in several species); semicells subsemicircular, usually five-lobed (in some species three-lobed); polar lobe generally widely cuneate, emarginate, or widely notched; lateral lobes usually bilobulate, lobules generally slightly bilobed; median part of base of semicells generally without protuberances; vertical view elliptic-lanceolate or linear-lanceolate; one lobed chloroplast in each semicell, with many scattered pyrenoids.
Zygospores globose, radially ornamented with stout spines, either simple, bifid, trifid, or quadrifid at their apices.

This genus includes some of the handsomest of British Desmids, many of the species being remarkable for the elegance of the lobulation of the semicells. There is always an odd number of lobes to each semicell, the middle one being differentiated from the rest as the polar lobe.

Many of the species are flattened and disc-shaped, the cells being relatively much thinner than in any other genus of Desmids. Certain species connect this genus both with Euastrum and Xanthidium.

Micrasterias and Euastrum were both included by Kuntze in his genus "Helierella," but we have previously mentioned that this name cannot be used for a genus of Desmids.

Species of this genus generally occur intermingled with other Desmids, and some of them are only found in the very richest localities for these plants, being confined to the lakes and bogs of the Older Palaeozoic and Precambrian areas.

There are 18 British species, which can be arranged as follows:

Section A. (Holocystis Hassall.) Polar lobe entire; lateral lobes of semicells two, transversely placed, generally entire, and attenuated to their extremities.

1. *M. oscitans*.
2. *M. pinnatifida*.

Section B. (Actinocystis Turner.) Polar lobe with a median incision of variable depth (rarely almost absent); lateral lobes of semicells four, radiately disposed, and widening outwards.

a. Lateral lobes generally much divided; interlobular incisions narrow.

† Interlobular incisions not deep.
3. *M. truncata*.
4. *M. crenata*.
5. *M. Jenneri*.
6. *M. conferta*.

†† Interlobular incisions deeper.
7. *M. papillifera*.
8. *M. Murrayi*.
9. *M. Sol*.
10. *M. apiculata*.
11. *M. rotata*.
12. *M. denticulata*.
13. *M. verrucosa*.
β. Lateral lobes with fewer divisions; interlobular incisions widely open.

15. *M. radiata.*

Section C. Polar lobe with accessory processes; lateral lobes of semicells two, symmetrical or asymmetrical.

17. *M. Americana.*
18. *M. Mahabaleshwarensis.*

(Pl. XLI, figs. 1–4.)

Helierella oscitans Kuntze, Rev. gen. plant. 1891, p. 899.

Cells of medium size, about as long as broad, deeply constricted, inner half of sinus usually narrowly linear, outer half open and acutely conical; semicells three-lobed; polar lobe wide, fusiform or subfusiform, with acuminate (rarely bifid) poles and a convex apex; incisions below the polar lobe deep and somewhat widely open; lateral lobes horizontal, ovate-triangular, with minutely bifid extremities. Side view of semicell elliptic-pyramidate, with a rounded apex. Vertical view elliptic-fusiform, with acuminate (very rarely bifid) poles. Cell-wall minutely punctate.

Zygospore unknown.

Length 125–146 μ; breadth 123–135 μ; breadth of polar lobe 91–95 μ; breadth below polar lobe 52–56 μ; breadth of isthmus 24–26 μ; thickness 44–52 μ.

England.—Kirk Fell, Cumberland! Westmoreland (Ralfs). Sussex (Ralfs). Chobham Common, Surrey! Wales.—Capel Curig (Cook & Wills) and Moel Siabod!, Carnarvonshire. Dolgelly, Merioneth (Ralfs).
SCOTLAND.—Aberdeen (P. Grant).
IRELAND.—Glencar, Kerry (Archer).

Typical *M. oscitans* is exceedingly rare and we have only found it on three occasions. Fig. 4 (on Pl. XLI) is a drawing of a semicell from Kirk Fell, Cumberland, which agrees very well with the plant as described by Ralfs.

American specimens have been described by Wolle with a diameter (breadth) of 150–160 μ.

Var. *mucronata* (Dixon) Wille. (Pl. XLI, figs. 5, 6.)

Helierella mucronata Kuntze, Revis. gen. plant. 1891, p. 599.

Cells proportionately longer than in the type, with the sinus more closed; lateral lobes larger and somewhat inflated, lateral angles generally furnished with two blunt teeth, and often with a third tooth above those at the angles; polar lobe flattened at the apex, and sometimes broadly retuse, lateral angles downwardly curved and generally furnished with a single blunt tooth; with the incisions below the polar lobe commonly smaller than in the type. Vertical view elliptic or elliptic-rhomboid, with acute poles.

Length 130–156 μ; breadth 104–131 μ; breadth of polar lobe 78–84 μ; breadth below polar lobe 58–64 μ; breadth of isthmus 25–33 μ; thickness 50–62 μ.

ENGLAND.—Borrowdale, Cumberland! Near Winder—
BRITISH DESMIDACEÆ.

mere (Bissett), Elter Water!, Grisedale Tarn!, and Stickle Tarn (abundant!), Westmoreland. Cronkley Fell and Lund’s Fell, N. Yorks! Chobham and Thursley Commons, Surrey! Dartmoor, Devonshire!

WALES.—Capel Curig! (Cooke & Wills), Snowdon!, bog on Glyder Fach (at 2,200 ft.)!, Carnarvonshire. Dolgelly, Merioneth!

SCOTLAND.—Ross, Inverness!, Aberdeen, Kincardine, Forfar, Perth, Argyll and Arran (Roy & Bissett). Scourie, Sutherland!

IRELAND.—Kylemore, Galway! Near Carrickmore, Tyrone (Dixon). Dublin and Wicklow (Archer).

This variety is much more frequently met with than typical M. oscitans, and it exhibits considerable variation. Many intermediate forms between the two occur, and this has resulted in the following names:

M. mucronata forma intermedia Nordst (‘Norges Desm.’ 1873, p. 6).

M. oscitans var. mucronata forma intermedia Boldt (1888).

M. oscitans var. intermedia Turn. (1893).

As so many of these intermediate forms exist, constituting a complete series connecting M. oscitans with its var. mucronata, there is no justification for giving them varietal names. Both Cooke and Wille have figured a number of these intermediate forms.

M. oscitans var. mucronata is largely an upland species and sometimes occurs in quantity in mountain bogs, generally amongst the leaves of Sphagnum cuspidatum var. plumosum, and very often mixed with Micrasterias Jenneri, Cosmarium Cucurbita, Euastrum insigne, and other Desmids.

2. Micrasterias pinnatifida (Kütz.) Ralfs.

(Pl. XLI, figs. 7–11, 13.)

Didymidium (Micrasterias) pinnatifidum Reinsch. Algenfl. Frank. 1867, p. 141.

Cells small, a little broader than long, deeply constricted, sinus open, triangular-acuminate with a narrowed apex; semicells 3-lobed, the interlobular incisions deep and broadly rounded; lateral lobes horizontally disposed, semifusiform, with attenuated and minutely bifid apices; polar lobe widely spreading, extremities narrower than those of the lateral lobes and minutely bifid, apex convex, straight, or sometimes very slightly retuse. Side view of semicell narrowly ovate-pyramidate, with a rounded apex. Vertical view narrowly rhomboid-lanceolate, with acuminate poles. Cell-wall very minutely punctate.

Zygospore globose, furnished with long, stout, acute spines, each arising from a blunt protuberance.

Length 53–76 μ; breadth 57–80 μ; breadth of polar lobe 39–57 μ; breadth of isthmus 12–18 μ; thickness 15–18 μ; diam. zygosp. without spines 44 μ, with spines 67 μ.

England.—Ambleside (Ralfs) and Bowness (Bissett), Westmoreland.
Wales.—Capel Curig, Carnarvonshire (Cooke & Wills). Dolgelly, Merioneth (Ralfs).
Scotland.—General, but scarce (Roy & Bissett). Aberdeen! Inverness! Scourie and Rhiconich, Sutherland! Fairly general in Lewis and Harris! Plankton of Loch Fadaghoda, Lewis, and of Loch Nan Eun, N. Uist!
Ireland.—Near Glenties and Lough Anna, Donegal! Ballynahinch, Roundstone, Loughs Aunierin, Athry,

Vol. II.
Creggan, Moher, and Shannacloontippen, Galway! Adrigole, Kerry!

We do not understand how any one could confuse this pretty little species with Micrasterias oscitans Ralfs, to which it bears only a superficial resemblance. It is one of the most distinctive species of the genus, and notwithstanding its wide geographical distribution it maintains its features very constantly.

Monstrosities of this species are sometimes found, such as those figured by Elfving (‘Anteck Finska Desm.’ 1881, t. 1, f. 1) and mentioned by Roy as sometimes occurring in Scotland (vide Roy & Biss. ‘Scott. Desm.’ 1893, p. 174).

One form from Ireland is worthy of special mention. We have given a figure of it on Plate XLI (fig. 12). It possesses an additional tooth above the bifid lateral angles, and was observed in quantity from Ballynahinch, Galway. The same form is known from the United States (vide West and G. S. West, ‘Some Desm. U. S.’ 1898, p. 295).

A number of varieties of this species occur in America which have not yet been found in Europe. One of these—var. trigona West—which is known from Maine, is particularly interesting, as it was the first triquetral specimen of a Micrasterias to be described.

3. Micrasterias truncata (Corda) Bréb.

(Pl. XLII, figs. 1–8; Pl. XLV, figs. 5, 6.)

Euastrum Rota Ehrenb. Entwiek. Lebends. d. Infus. 1832, p. 82 [for all practical purposes only a name]; Infus. 1838, p. 161, t. 12, f. 1 [in part; 1 g and 1 h = _M. truncata_].

Cosmarium quadragies-cuspidatum Corda in Alm. de Carlsbad, 1840, p. 215, t. 6, f. 40.

M. truncata var. europaea De Toni, Syll. Alg. 1889, p. 1115.
M. truncata forma incisa De Toni, l.c.
M. truncata var. quadragies-cuspidata De Toni, l.c.
M. truncata var. tridentata Bennett, Freshw. Alg. Hamps. and Devon.
1890, p. 7 t. 1, f. 10.
Heliocella truncata Kuntze, Rev. gen. plant. 1891, p. 597.
Micrasterias truncata forma punctata West, Alg. W. Ireland, 1892, p. 135;

Cells small, generally a little longer than broad, elliptical with widely truncate poles, deeply constricted, sinus narrowly linear, often slightly open towards the outside; semicells scarcely 5-lobed, incisions below the polar lobe moderately deep and generally somewhat open (rarely narrowly linear), incisions between the two lateral lobes slightly open and not so deep; lateral lobes somewhat variable, typically bilobulate with each lobule emarginate; polar lobe very widely cuneate (sometimes almost fusiform), apex convex and usually flattened or slightly retuse in the middle, lateral angles acuminate or emarginate. Side view of semicell broadly ovate. Vertical view fusiform-elliptic, poles acute. Cell-wall delicately or strongly punctate.

Zygospore unknown.

Length, 87–138 μ; breadth 78–129 μ; breadth of polar lobe 65–97 μ; breadth of isthmus, 18–27 μ; thickness, 36–52 μ.

WALES.—Common, especially abundant in the upland bogs!

SCOTLAND.—General and abundant! (Roy & Bisset). Outer Hebrides! Orkneys! Shetlands!

IRELAND.—General and abundant!

This is one of the most abundant species of the genus, more especially in the Sphagnum-bogs and pools of upland districts. In almost all mountainous areas this Desmid is frequent from 800 to 2,500 ft., and it is very remarkable that its zygospore has not yet been found.

It is widely distributed throughout Europe and North America, and some twenty varieties of it have been described by different authors. Many of these so-called "varieties," however, have no claim to rank as such, as the species is a very variable one, the two semicells of the same plant often being widely different in appearance. The lobulation of the lateral lobes varies very much, and forms obtained from different localities rarely agree in the extent and disposition of their lobulation. We have given figures of a number of specimens, mostly from different localities, which show great differences in the lobulation.

Each lateral lobe is normally divided into two lobules, each lobule being emarginate. Sometimes the angles of the lobule are almost spinate, or they may be furnished with subcapitate projections (vide Pl. XLII, fig. 7). Sometimes the lobules are tridentate (this form having been named "var. tridentata" by Bennett), but many specimens occur in which some of the lobules are tridentate and others emarginate. This is shown on Pl. XLII, fig. 1. The lateral incisions exhibit much variation in the extent to which they are open or closed.

The plant described as "Cosmarium quadrangulatus-cuspidatum" by Corda was only a form of this species, the author (and certain subsequent authors) having mistaken the radiating fibrillar structure of the mucous investment for an armament of spines.

The form in which the lobules are furnished at each angle with a distinct spine is very rare in the British Islands. It was first specially mentioned by Brébisson, being named by him "Euastrum semiradiatum" (vide Menegh. 'Synops. Desm.' 1840, p. 215). Küttzing ('Spec. Alg.' 1849, p. 170) placed it as "Micrasterias semiradiata," and Cleve ('Sverig. Desm.' 1864, p. 487) as "M. truncata var. semiradiata." Istvanffy subsequently (1887) created another synonym by renaming the same form "M. truncata subsp. radiosa"!
MICRASTERIAS.

Forma granulata Racib.

Cell-wall densely covered with irregular granules, otherwise similar in form and size to the type.

England.—Hawkshead, Lancashire!

Ireland.—Ballynahinch and Lough Athry, Galway!

Geogr. Distribution.—Austria.

Var. Bahusiensis Wittr. (Pl. XLII, fig. 9.)

M. truncata var. Bahusiensis Wittr. Skandinav. Desm. 1869, p. 9, t. 1, f. 2;
West & G. S. West, Alg. S. England, 1897, p. 484.

Cells with large outstanding polar lobes; incisions below the polar lobes widely open.

Length 110 μ; breadth 100 μ; breadth of polar lobe 83 μ.

England.—New Forest, Hants!

Scotland.—Rhiconich, Sutherland!

Geogr. Distribution.—Sweden.

This variety is well-marked by reason of the outstanding polar lobes.

4. **Micrasterias crenata** Bréb.

(Pl. XLII, figs. 10–13.)

Didymium (Micrasterias) truncatum forma a. crenatum Reinsch, Algenfl. Franken, 1867, p. 143.

Cells small, about 1½ times longer than broad, elliptic with truncate poles, deeply constricted, sinus narrowly linear; semicells 5-lobed, incisions between the lobes linear, those below the polar lobe considerably deeper than those between the lateral lobes; polar lobe very broadly cuneate, with a convex apex (sometimes a little flattened) and rounded angles; lateral
lobes bilobulate (rarely entire), lobules rounded-truncate or very slightly retuse. Side view of semicell widely ovate. Vertical view fusiform-elliptic. Cell-wall smooth.

Zygospore unknown.

Length 75–125 μ; breadth 54–102 μ; breadth of polar lobe 46–65 μ; breadth of isthmus 17–30 μ.

Wales. — Near Dolbadarn Castle!, Bethesda!, Capel Curig (Cooke & Wills), and Snowdon (Roy), Carnarvonshire. Dolgelly, Merioneth (Ralf's).

Scotland. — Ross, Inverness, Aberdeen, Kincardine, Forfar, Perth!, Argyll, Arran, Fife (Roy & Bissett).

Ireland. — Kylemore, and Loughs between Clifden and Roundstone, Galway!

The typical form of *M. crenata* seems very distinct from *M. truncata*. It is proportionately longer, with a more robust and deeper polar lobe, which is never retuse in the middle, though often flattened. The lateral angles of the polar lobe are rounded, and the lateral lobes are not so deeply incised as in *M. truncata*, the lobules possessing at the same time rounded angles.

It is unquestionably a rare species, although many forms have been recorded intermediate in character between it and *M. truncata*.

5. **Micrasterias Jenneri** Ralfs.

(Pl. XLII, fig. 14; Pl. XLIII, figs. 1, 2.)

Cells rather large, about $1\frac{1}{2}$ times as long as broad, oblong-elliptic, deeply constricted, sinus narrowly linear; semicells 5-lobed, interlobular incisions narrow and linear, not very deep, those below the polar lobe deeper than the others; lateral lobes somewhat cuneate and slightly bilobulate, each lobule retuse; polar lobe very widely cuneate, angles rounded, apex broadly convex but retuse in the middle. Side view of semicell oblong-elliptic. Vertical view oblong-fusiform, with the sides in the middle subparallel, somewhat suddenly attenuated to the poles, which are obtusely rounded. Cell-wall densely covered with irregular flattened granules of variable size, which are sometimes much reduced.

Zygospore unknown.

Length 132–170 μ; breadth 82–125 μ; breadth of polar lobe 60–81 μ; breadth of isthmus 24–33 μ.

England.—Near Stickle Tarn, Westmoreland (very abundant)! Sutton Park, Warwick (Wills). Thursley Common, Surrey! New Forest, Hants! (Raf)s. Cornwall (Marquand).

Wales.—Capel Curig, Carnarvonshire! (Cooke & Wills). Dolgelly, Merioneth! (Raf)s.

Ireland.—Near Foxford, Mayo! Kylemore, Galway! Tyrone (Archer). Dublin and Wicklow (Archer). Glencar (Archer) and Carrantuohill!, Kerry.

This characteristic species is very uncommon. It occurs principally in upland Sphagnum-areas and is sometimes found in quantity in association with Micrasterias oscitans var. mucronata, Euastrum insigne, Xanthidium armatum, etc. The typical form is densely covered with flattened granules, but the amount of roughness varies much in different specimens.
Var. simplex West. (Pl. XLIII, fig. 3.)

M. Jenneri var. simplex West, Alg. N. Wales, 1890, p. 287, t. 6, f. 34; Alg. W. Ireland, 1892, p. 135; West and G. S. West, Alg. S. England, 1897, p. 484; Alg. N. Ireland, 1902, p. 30.

Cells with the lateral lobes entire and slightly retuse, polar lobe narrower and more cuneate; cell-wall smooth or punctate.

Length 127–150 μ; breadth 95–100 μ; breadth of polar lobe 53–56 μ; breadth of isthmus 25–34 μ.

England.—Near Stickles Tarn, Westmoreland! New Forest, Hants!

Wales.—Dolgelly, Merioneth!

Scotland.—Moidart, Inverness!

Ireland.—Glenties, Donegal! Ballynahinch, Galway! Lough Fea, Londonderry!

Geogr. Distribution.—Brazil.

(Pl. XLIII, figs. 4–8.)

M. granulata Wood, Freshw. Alg. N. Amer. 1874, p. 146, t. 21, f. 16.

Helierella conferta Kuntze, Revis. gen. plant. 1891, p. 898.

Cells somewhat small, broadly elliptic, deeply constricted, sinus narrowly linear (often entirely closed by the overlapping of the basal angles of the semicells); semicells five-lobed, with all the lobes and lobules closely approximated, the interlobular incisions being narrowly linear and not very deep; polar lobe subcuneate, dilated from a somewhat narrow base, lateral margins concave, apex convex but retuse in the middle, with two minute papillae on the apical margin near each of the slightly-obtuse angles, often with a pair of small teeth on each side of the median hollow; lateral lobes about equal in breadth, each divided by a shallow incision into two lobules, lobules again divided, the four ultimate divisions being equal in size and retuse-emar-
Micrasterias.

89
ginate (sometimes convex with a median papilla). Side view of semicell rectangular-oblong, apex rounded-truncate and bearing 3 papillae, sides slightly retuse. Vertical view oblong-lanceolate with a papilla at each pole. Cell-wall minutely punctate.

Zygospore unknown.

Length 84–89 µ; breadth 74–82 µ; breadth of polar lobe 40–44 µ; breadth of isthmus 16–19 µ; thickness 23 µ.

Scotland.—Glen Urquhart, Inverness; Upper Powell in Birse, Birsemore Loch, Dalwhing near Aboyne, near Loch Dawan, and near Loch Kinord, Aberdeen; Muirhyaugh and Dalbrake in Strachan, Kincardine; Glen Coe, Argyll; North Glen Samnox, Arran (Roy’s Bissett). Near Stirling! Rhiconich, and plankton of Loch Morar, Sutherland! Near Tarbert and in the plankton of Loch Laxadale, Harris! Near Balallan and in plankton of Loch Mor Bharabhais, Loch Cuthaig, and Loch Fadaghoda, Lewis, Outer Hebrides!

This Micrasterias is essentially of a northern type and it is one of the rarest British species. In Europe it seems to be almost confined to the north-western countries, and it is met with frequently in the eastern parts of the United States.

It is only known from Scotland in the British Islands, having been found in a number of localities on both the eastern and western slopes. In some parts of the Outer Hebrides it can be obtained frequently, but never in abundance.

M. conferta is a very characteristic species, M. papillifera being the only other species of the genus with which it could be confused. It is, however, easily distinguished by the shortness and breadth of the polar lobe, which widens out from a relatively narrow base. The lobes and lobules are more compact and crowded than is generally the case in M. papillifera, and the incisions between them are not so deep. The apex of the polar lobe also differs greatly from that of M. papillifera, and the interlobular incisions are not bordered by minute spines.

Irregularities in the form of the lobules are of frequent occurrence. The four small lobules of each lateral lobe should
normally be slightly retuse or emarginate, but they are often truncate with a median papilla, or even bluntly triangular. There is also a great tendency for the lateral lobes to grow in size until they not only overlap each other at the sinus, but also overlap the polar lobe on each side.

Var. hamata Wolle. (Pl. XLIII, figs. 10, 11.)

Lateral lobes as in the typical form, or rarely somewhat further subdivided; polar lobe less widely cuneate, with the lateral angles downwardly uncinate.

Length 80–128 \(\mu\); breadth 75–107 \(\mu\); maximum breadth of polar lobe 36·5–53 \(\mu\); breadth of isthmus 10·5–19 \(\mu\).

Scotland.—Plankton of Loch nan Cuimie, Sutherland! (J. Murray). Near Tarbert, Harris, Outer Hebrides!

Geogr. Distribution.—United States.

This is a very curious variety of *M. conferta* in which the lateral margins of the polar lobe are greatly excavated just below the angles of the lobe. The lobe is thus more or less anvil-shaped, and the angles are distinctly uncinate. The incisions below the polar lobe are therefore widely open, but closed again at the outer extremity. Specimens of this variety sometimes reach a larger size than is ever attained by the typical form.

We have already pointed out (‘Some N. Amer. Desm.’, p. 241) that Börgesen was greatly in error in elevating this variety to the rank of a species. Moreover, the *Micrasterias* which Börgesen figured from Brazil under the name of “*M. hamata* forma *Brasiliensis*” (vide Börg. ‘Desm. Bras.’ t. 2, f. 11) is certainly not a form of *M. conferta* var. *hamata*. We have seen many specimens of *M. conferta* which combined the characters of both the type and the var. *hamata*. Very often the polar lobe of one semicell is typical, whereas that of the other semicell is such as is found in the var. *hamata*. We give a figure of one of these forms which demonstrates conclusively that the var. *hamata* is truly a variety of *M. conferta* and not a distinct species (Pl. XLIII, fig. 9; length 77 \(\mu\); breadth 76 \(\mu\)).
7. *Micrasterias papillifera* Brèb.

(Pl. XLIV, figs. 1, 2, 7.)

Didymidium (*Micrasterias*) *papilliferum* Reinsch, Algenfl. Frank. 1867, p. 146.

Helierella papillifera Kuntze, Revis. gen. plant. 1891, p. 509.

Cells of moderate size, usually a little longer than broad, subelliptic or subcircular, deeply constricted, sinus very narrowly linear; semicells 5-lobed, with the lobes and lobules usually almost approximate, interlobular incisions linear; polar lobe cuneate with concave sides, apex concave with a slight median notch, each angle slightly produced and furcato-emarginate, with a pair of small teeth on each side of the median notch; lateral lobes cuneate, of almost equal breadth, each divided by a moderately deep incision into two lobules, lobules again divided, the four ultimate divisions of each lobe being emarginate (or rarely tridenticulate). Side view of semicell elliptic-oblong, with a tricuspidate apex. Vertical view narrowly oblong with subacute poles. Cell-wall generally minutely punctate, with a row of acute granules or denticulations on each side of the sinus and the interlobular incisions; in both side and vertical views these granules or small teeth are marginal.

Zygospore globose, furnished with strong processes, each of which is doubly furcate at the apex, the ultimate divisions being small but widely spreading; the processes are one-third the diameter of the zygospore in length.

Length 118–145 μ; breadth 108–145 μ; breadth of polar lobe 35–44 μ; breadth of isthmus 15–22 μ; thickness 21–24 μ; diam. zygosp. without processes
42–44 μ, with processes 67–72 μ; length of processes 15–17'5 μ.

Wales.—Fairly general in the north! Zygospore from Dolgelly, Merioneth (Ralf's).

Scotland.—General! Zygospores from Dinnet, Aberdeen, and from Fowlis Wester, Perth (Roy & Bissett). Outer Hebrides! Orkneys! Shetlands!

Ireland.—Donegal! Mayo! Galway! Kerry! Dublin and Wicklow (Archer). Antrim!

This is the most abundant of the smaller British species of the genus which possess deeply-lobed semicells. It is known at once by the form of the polar lobe and by the denticulations bordering the interlobular incisions. It is somewhat variable in its relative proportions. Most specimens are a little longer than broad, but individuals are sometimes met with of equal length and breadth.

M. papillifera cannot be confused with *M. conferta* if the polar lobe is carefully examined. It must likewise be remembered that the latter species is smaller, very much rarer, and more restricted in its distribution.

Some forms occasionally exhibit a roughness on the exterior of the cell-wall somewhat similar to that commonly present on *M. Jenneri*. Cells of this kind are invariably old ones and may exhibit a rather corroded outline. Schmidle ("Beitr. alp. Alg.," 1896, p. 23 cum fig.) has named forms of this nature which he found in the Austrian Tyrol "var. verrucosa."

Forma major. (Pl. XLIV, fig. 3.)

Length 200 μ; breadth 170 μ; breadth of polar lobe 51 μ; breadth of isthmus 29 μ.

Wales.—Llyn Ogwen, Carnarvonshire!
Var. *gabra* Nordst. (Pl. XLIV, figs. 4, 5.)

Cells destitute of the acute granules or denticulations which are normally present on both sides of the principal incisions.

Length 90–125 μ; breadth 88–109 μ; breadth of isthmus 19 μ.

Scotland.—Near Tarbert, Harris, Outer Hebrides!

Ireland.—Ballynahinch, Galway!

Geogr. Distribution.—N. Russia. Brazil.

A form of this variety was described from the west of Ireland as "var. *gabra* Nordst. forma *inflata* West," in which there was a small basal inflation in the side view of the semicells. This form is figured on Pl. XLIV, fig. 5 (length 125 μ; breadth 125 μ; breadth of isthmus 15 μ; thickness 29 μ). Consult West, 'Alg. W. Ireland,' 1892, p. 135, t. 20, f. 10. Nordstedt has suggested that this form is possibly a small specimen of *M. denticulata* var. *notata*, but we do not think so.

Var. *varvicensis* Turner. (Pl. XLIV, fig. 6.)

"A variety with the lobes and lobules incised almost as in *M. Crux-Melitensis*." The interlobular incisions are considerably more open than in the typical form.

Length 128 μ; breadth 120 μ; breadth of isthmus 26 μ.

England.—Sutton Park, Warwick (T. Bolton).

(Pl. XLV, figs. 1–3.)

Cells of medium size, as broad as long, very deeply constricted, sinus widely open with an acute apex; semicells broadly subsemicircular and deeply 5-lobed,
with the incisions between the lobes widely open and subradial; polar lobe with subparallel sides, suddenly dilated near the apex, which is retusely emarginate, angles emarginate-dentate, with a minute tooth within the apical margin towards each angle; lateral lobes equal, divided into four equal lobules, the median incision being twice the depth of the other two incisions, each lobule emarginate-dentate. Cells with a series of minute teeth or denticulations on each side of the interlobular incisions and the sinus.

Zygospore unknown.

Length 142–151 \(\mu \); breadth 142–147 \(\mu \); breadth of isthmus 18 \(\mu \).

Scotland.—In the plankton of Loch Ruar, Sutherland! (J. Murray).

This species occurred in abundance in the plankton of Loch Ruar, the only locality from which it has yet been obtained. Its characters are very constant and do not agree with those of any other described species of the genus. The incisions between the lobes and lobules are all widely open with concave sides, which feature causes them to be widest about the middle. The sinus, which is more open than that of any other incised Micrasterias, is one of the most striking characters of the species.

The only species with which it could be confounded are *M. papillifera* Bréb. and *M. Sol* (Ehrenb.) Kütz. (particularly var. *ornata* Nordst.). From *M. papillifera* it is distinguished by the widely-open sinus and incisions, which are also deeper, and by the very different form of the polar lobe. It is distinguished from *M. Sol* by the widely-open sinus and incisions, which are not so deep, and by the absence of the further subdivision of the superior lateral lobes.

M. Murrayi possesses a series of minute denticulations along the margins of the sinus and each of the incisions between the lobes. This character is present in *M. papillifera* and in *M. Sol* var. *ornata*.

Var. *triquetra* West & G. S. West. (Pl. XLV, fig. 4.)

Cells triquetrous, triradiate in the vertical view.
MICRASTERIAS.

Length 163 μ; breadth 151 μ; breadth of isthmus, 16 μ.

SCOTLAND.—In the plankton of Loch Doon, Ayrshire!

This variety is of great interest as only one other triangular form of Micrasterias is known to occur, viz. M. pinnatifida (Kütz.) Ralfs var. trigona West ('Freshw. Alg. Maine,' 1889, p. 206; in 'Journ. Bot.' 1889, t. 291, f. 15).

(Pl. XLVI, figs. 1, 2.)

Helierella Sol (Ehrenb.) Kuntze Rev. gen. plant. 1891, p. 897.

Cells approximately circular in outline, very deeply constricted, sinus slightly open with each margin faintly 2- or 3-undulate; semicells deeply 5-lobed, with the incisions between both the lobes and lobules deep and slightly open, sometimes open inwards but closed outwards; polar lobe with subparallel sides, slightly expanded at the apex, apical margin retuse-emarginate, each angle emarginate-dentate, with a small tooth attached within the apical margin near the angle on each side; lateral lobes unequal, superior lateral lobes slightly larger than inferior lateral lobes and generally (but not always) more subdivided; inferior lateral lobes divided into four equal lobules by three incisions, the median one being much deeper than the other two, each lobule furcate-dentate at the extremity (or sometimes further divided into two furcate-dentate portions of equal size); superior lateral...
lobes divided into eight equal lobules by seven incisions of which the median one is much the deepest, each lobule furcate-dentate at its extremity; margins of interlobular incisions generally slightly undulate like the sinus. Side view of semicell linear-oblong, very gradually attenuated to a tridentate apex. Vertical view linear-fusiform, with acute poles and a slight flattened protuberance in the middle on each side. Cell-wall delicately punctate.

Zygospore unknown.

Length 162–191 μ; breadth 158–192 μ; breadth of polar lobe (at apex) 36–38 μ; breadth of isthmus 17–18 μ.

England.—Bowness, Westmoreland! Near Chapel Wood, S.E. Surrey! Cornwall (Marquand).

Wales.—Capel Curig, Carnarvonshire (Cooke & Wills)! Llyn Gwernan near Dolgelly, Merioneth (Ralfs).

Scotland.—Slewdrum, Aboyne and Birsemore Lochs, Aberdeen (Roy & Bissett). Rhiconich, and in the plankton of Lochs Shin, Ghriama, and nan Cuinne, Sutherland! Plankton of Loch Fadaghoda, Lewis; near Tarbert, Harris; and in the plankton of Loch nan Eun, N. Uist, Outer Hebrides! Plankton of Loch Beosetter, Bressay, Shetlands!

Ireland.—Lough Derryclare, Galway! Adrigole, Kerry!

This is one of the most beautiful species of the genus and has been recorded principally under the name of "Micrasterias radiosa." The first recognizable mention of this Micrasterias is that by Ehrenberg in 1843 under the name of Euastrum Sol.

Neither Echinella radiosa Acharius (in Weber and Mohr, 'Beitr. zur Naturkunde,' II, 1810, p. 340, t. 4, f. 4–15), nor Echinella radiosa Lyngbye ('Tantamen Hydrophyt. Danicæ,' etc., Hafniae, 1819, p. 208, t. 69, f. e) refer to anything of the nature of a Micrasterias as the genus is at present understood. Micrasterias radiosa Ag. (in 'Flora,' 1827, p. 643) is simply a
name which the author gave to *Echinella radiosa* Lyngbye. *Micrasterias radiosa* Ralfs (‘Brit. Desm.’ 1848, p. 72, t. 8, f. 3) which that author wrongly attributed to Agardh, is the first good account of the Desmid described and figured by Ehrenberg five years previously (1843) under the name of "Euastrum Sol." Ralfs himself recognized this identity and placed *Euastrum Sol* Ehrenb. as a synonym of his *Micrasterias radiosa*. The specific name "Sol" must therefore take precedence over Ralfs’ name "radiosa."

Micrasterias Sol is almost circular in outline, and is easily distinguished by the depth and elegance of its lobulation. The margins of the deeper incisions are usually slightly undulate and the lobules frequently overlap.

North American specimens of this species exhibit much greater variation than is shown in British examples.

Var. ornata Nordst. (Pl. XLVI, figs. 3, 4.)

With a row of minute teeth or denticulations on each side of the sinus and of the incisions between the five lobes of the semicells.

Length 112–188 μ; breadth 110–171 μ; breadth of isthmus 16–18 μ; thickness 22 μ.

Wales.—Capel Curig, Carnarvonshire!

Scotland.—Near Brin, Inverness; Slewdrum and near Craigendinnie Farm, Aberdeen; Scoltie Dam, Kincardine (*Roy & Bissett*). Plankton of Loch Doon, Ayrshire! Plankton of Loch Fadaghoda, Lewis, Outer Hebrides!

10. *Micrasterias apiculata* (Ehrenb.) Menegh. (Pl. XLVII, figs. 1, 2.)

Didymidium (Micrasterias) apiculatum Reinsch, Algenfl. Frank. 1867, p. 145.

Helierella apiculata Kuntze, Rev. gen. plant. 1891, p. 898.

Cells large, a little longer than broad, subelliptic in outline, very deeply constricted, sinus widely open outwards but linear towards its apex; semicells 5-lobed; polar lobe distinctly exserted, lower portion with sub-parallel sides, upper portion widely dilated, apex retuse-emarginate, angles with a pair of diverging spines and with a large curved spine on the apical margin close to each angle, and with a pair of spines on each side of the apical notch; lateral lobes subequal, bilobulate, lobules again divided and each division furnished with two (sometimes three) marginal curved spines; incisions bordering the polar lobes opening widely outwards, the remaining incisions (both primary and secondary) more or less open. Side view narrowly ovate-pyramidate with a truncate apex bearing spines. Vertical view rhomboid-elliptic with acute poles. Cell-wall furnished with numerous minute spines, arranged in subradiate rows or scattered over the surface, with four rather larger spines arranged in a quadrate manner in the middle of each semicell just above the isthmus.

Zygospore unknown.

Length 220–294 μ; breadth 180–250 μ; breadth of isthmus 30–36 μ.

England.—Bowness, Westmoreland (Turner).

This beautiful species in its typical form is only known from the English Lake District, having been found by Turner in a locality which furnishes numerous specimens of
several of its varieties. It can be at once recognized by the numerous spines inserted regularly on the margins of the lobules and polar lobe, and more or less irregularly all over the surface of the cell. It is somewhat variable in its relative proportions.

Var. fimbriata (Ralfs) Nordst. (Pl. XLVI, fig. 6; Pl. XLVII, figs. 3, 4.)

Euastrium Rota Ehrenb. Infus. 1838 (in part), t. 12, f. I d.

Didymidium (Micrasterias) fimbriatum Reinsch. Algenfl. Frank. 1867, p. 149.

Heliocrella fimbriata Kuntze, Revis. gen. plant. 1891, p. 808.

Interlobular incisions narrower than in the type, causing the lateral and polar lobes to become approximate; polar lobe less projecting, usually with fewer apical spines; cell-wall commonly destitute of surface-spines.

Zygospore globose, furnished with slender, elongate, scattered spines, mostly furcate at their extremities and sometimes notched below the middle; furcate extremities with the divisions recurved.

Length 230–255 μ; breadth 216–245 μ.; breadth of isthmus 29–32 μ.; diam. of zygospore without spines 75 μ, with spines 125 μ.

Wales.—Capel Curig, Carnarvonshire (Cooke & Wills). Dolgelly, Merioneth (Ralfs).

Scotland.—Scotston Moor, near Kintore, Presswhin, Loch Ullachie, and near Ballater, Aberdeen; near Bridge of Feugh, Kincardine; Menmuir, Forfar (Roy & Bissett). Rhiconich, Sutherland! Plankton of Loch nan Cuinne, Sutherland! (J. Murray).
IRELAND.—Dublin and Wicklow (Archer). Clough, Antrim!

Var. fimbriata forma spinosa Bissett. (Pl. XLVII, fig. 5.)

Cell-wall furnished with a row of minute spines along each side of the principal incisions, three or four close to the base of each semicell, and a row of about four under the base of the polar lobe.

Length 210 μ; breadth 200 μ; breadth of isthmus, 25 μ.

SCOTLAND.—Slewdrum, Loch Ullachie and marsh west of it, Aberdeen (Roy & Bissett).

M. apiculata var. fimbriata, although a scarce Desmid, is more often met with than any of the other forms of M. apiculata. It is exceedingly variable in the form of the lobules, especially those of the inferior lateral lobes nearest the sinus, which often project considerably beyond the general contour of the cell. The polar lobe is also variable in the amount of its exsertion, sometimes projecting considerably beyond the superior lateral lobes, sometimes not projecting in the least degree. The insertion of the marginal spines is precisely similar to that in typical M. apiculata. Most forms of M. apiculata var. fimbriata are usually destitute of surface-spines, but many intermediate stages are met with between such forms and the thickly-spined form of M. apiculata itself. In some the surface-spines are scattered and few in number, in others they are irregularly disposed in the neighbourhood of the principal incisions, and in others they are more numerous and more regularly arranged. The latter form was named by Bissett “f. spinosa.”

The zygospore is recorded from Rochester, New Hampshire, U.S.A., by Wolle.
Var. brachyptera (Lund.) nob. (Pl. XLVI, fig. 5; Pl. XLVII, figs. 6, 7.)

M. brachyptera forma *bispinata* Turn. New and Rare Desm. 1885, p. 937, t. 16, f. 15.

Helierella brachyptera Kuntze, Revis. gen. plant. 1891, p. 598.

Proportionately longer than the type; polar lobe *more projecting*, relatively larger and *wider*, with a distinct constriction below the apex, apical margin widely retuse; lateral lobes *shorter* and generally with fewer lobulations; sinus and incisions between the lobes widely open, especially the incisions between the polar lobe and the superior lateral lobes; generally with a row of spines bordering each side of the polar lobe and the sinus. Cell-wall punctate.

Length 191–230 μ; breadth 131–180 μ; breadth of isthmus 34–37 μ; max. breadth of polar lobe 54–60 μ; thickness 72 μ.

England.—Bowness, Westmoreland! (Bissett).

Scotland.—Loch Ness, Inverness! Rhiconich, Sutherland! Plankton of Loch Fadaghoda, Lewis, Outer Hebrides!

This is a well-marked variety of *M. apiculata* differing in its shorter lateral lobes, wider and more outstanding polar lobe, and in the fewer number of surface-spines. The insertion of the marginal spines is exactly similar to that of all other forms of *M. apiculata*, and the lobulation of the lateral lobes and number of inserted spines is very variable, the two semicells of one individual often differing considerably in these respects. There is thus no reason for Turner's name "forma *bispinata.*" Most specimens of this variety possess a row of spines within each side of the polar lobe and within each margin of the sinus. The number of these spines is variable and in some specimens they are entirely wanting.
The latter forms have been termed by Nordstedt "forma glabriuscula" (vide Pl. XLVII, fig. 7). The lateral lobes in some forms are widely separated and spreading, but in others they are more compact and the incision between them is narrow.

11. Microasterias rotata (Grev.) Ralfs.

(Pl. XLVIII, figs. 1–6.)

Microasterias furcata Ag. in Flora, 1827, p. 643 [Description bad and quite unrecognizable; Agardh's original specimens have been found to be partly M. rotata].

? Eusastrum Rota Ehrenb. Entw. of Infus. 1832, p. 80 [Description bad and too brief]; Ehrenb. Infus. 1838, p. 101, t. 12, f. 1 [Figures include M. rotata, M. apiculata var. fimbriate, and M. truncata].

Didymium (Microasterias) rotatum Reinsch, Algenfl. Frank. 1867, p. 149.

Helierella rotata Kuntze, Revis. gen. plant. 1891, p. 899.

Microasterias rotata var. acutidentata Benn. Freshw. Alg. S.W. Surrey, 1892, p. 9, t. 2, f. 10 [Figure incorrect].

Cells large, a little longer than broad, subcircular in outline, very deeply constricted, sinus narrowly linear; semicells 5-lobed, interlobular incisions narrowly linear; polar lobe gradually widening upwards, with concave sides, often slightly projecting, apex retuse-emarginate, angles slightly produced and bidentate; lateral lobes unequal and broadly cuneate, each divided into two lobules by a deep incision; superior lateral lobes larger than inferior lobes, each lobule subdivided into four equal emarginate (or bidentate) parts by three incisions, the median one being the deepest; lobules of inferior lateral lobes divided into two (sometimes four)
bidentate (rarely tridentate) parts. Side view of semicell ovate-lanceolate, with a broadly truncate apex and an inflated base. Vertical view narrowly elliptic-rhomboid, with acute poles and a small inflation in the middle of each side. Cell-wall delicately punctate.

Zygospore globose, furnished with many strong, elongate, simple spines.

Length 208–366 μ; breadth 165–305 μ; breadth of isthmus 29–43 μ; breadth (maximum) of polar lobe 48–80 μ; diam. zygospore without spines 108 μ, with spines 158 μ.

WALES.—Capel Curig! (Cooke & Wills), Llyn Padarn! Llyn Idwal!, Y Foel Fras!, Carnarvonshire. Glamorganshire!

SCOTLAND.—General! Zygospores from Slewdrum, Aberdeen; near Bishop’s Dam, Kincardine; Monroman Moor, Forfar (Roy & Bissett). Occasional in the plankton! Outer Hebrides! Shetlands!

IRELAND.—General, but scarce! Zygospores from Wicklow (Archer).

M. rotata is not a common species, although very widely distributed. It is easily distinguished from *M. denticulata* by the emarginate-dentate lobules and by the polar lobe, which is slightly exserted and furnished with bidentate angles.

The principal variation is in the polar lobe, especially in the amount of its exsertion. Sometimes the incisions on each side of the polar lobe are more or less open, and
its angles may be produced to form very short bidentate processes.

The inferior lateral lobes occasionally possess the same number of ultimate lobules as the superior lateral lobes, and in more normal specimens in which the inferior lateral lobes are only subdivided into four divisions, some or all of these divisions are sometimes tridentate.

Forma granulata West.

M. rotata forma *granulata* West, Alg. W. Ireland, 1892, p. 134.

Cell-wall distinctly granulate, granules flattened and irregularly scattered.

IRELAND.—Lough Aunierin, Galway!

Forma evoluta Turn.

Incisions between the lobes and lobules more open than in the type; polar lobe furnished with a pair of small teeth on the apical margin on each side of the median emargination.

Length 270–282 \(\mu \); breadth 220–262 \(\mu \).

SCOTLAND.—Sligachan in Skye, Inverness!

Geogr. Distribution.—Germany. India.

The polar lobe of this form may or may not be exserted, and the cell-wall is sometimes strongly punctate.

Var. urnigera Bennett.

M. rotata var. *urnigera* Benn. Freshw. Alg. Hamps. and Devon, 1890, p. 6, t. 1, f. 9.

Slightly larger than the type; polar lobe "urn-like" and projecting for a distance of 25 \(\mu \).

Length (including projecting polar lobe) 325 \(\mu \); breadth 250 \(\mu \).

ENGLAND.—Lyndhurst, Hants (*Bennett*).

We are unacquainted with this variety, and have not reproduced Bennett's figure, as it is too much of a caricature.
12. **Microasterias denticulata** Bréb.

(Pl. XLIX, figs. 1–7; Pl. L, figs. 1, 2.)

Cells large, about \(\frac{1}{3}\) times longer than broad, broadly elliptic in outline, deeply constricted, sinus narrowly linear; semicells 5-lobed, interlobular incisions narrowly linear; polar lobe narrowly cuneate, with dilated apex and concave sides, not projecting beyond the lateral lobes, apical margin retuse with a widely-open notch in the centre, angles obtuse or sometimes truncate emarginate; lateral lobes almost equal and broadly cuneate, superior lateral lobes sometimes a little larger than inferior ones, divided into two lobules by a deep incision, each lobule further divided into four (sometimes only two) subequal, retuse or emarginate parts. Side view of semicell narrowly pyramidate, with a marked protuberance on each side near the base. Vertical view fusiform, poles acutely conical, with three undulations at the middle on each side. Cell-wall delicately or sometimes coarsely punctate.

Zygospore globose, furnished with scattered, elongate, stout spines with bifid and trifid apices, some of which sometimes divide again and become recurved.

Length 205–350 \(\mu\); breadth 177–277 \(\mu\); breadth of
isthmus, 23–40 μ; breadth (maximum) of polar lobe 55–75 μ; thickness 55–60 μ; diam. of zygospore without spines 80–116 μ, with spines 170–195 μ.

Wales.—General! Up to 2,200 ft. on Glyder Fach, Carnarvonshire!

Scotland.—General! (Roy & Bissett). Up to 3,500 feet on Lochnagar! Scarce in the plankton! Outer Hebrides! Shetlands!

Ireland.—General!

M. denticulata is a common British species, and is more often met with than any other species of the genus except *M. truncata*, the latter being more plentiful at elevations of 1,000 feet and upwards. It can sometimes be obtained in pure gatherings in small boggy ditches or at a boggy spring. Such pure collections we have made at Eldwick and Adel in W. Yorkshire.

The ordinary form of *M. denticulata* is a little smaller than *M. rotata*, the lateral lobes are more equal and equally lobed, and their ultimate subdivisions are truncate-emarginate and not bidentate. The polar lobe is not exerted beyond the periphery of cell as in *M. rotata*, is more cuneate in shape, with a deeper median notch, and possesses rounded or rounded-truncate angles. In the side-view of the semicell *M. rotata* is stouter and more turgid than *M. denticulata*, and in the vertical view it is also stouter with a solitary rounded protuberance on each side, whereas *M. denticulata* is more slender in vertical view and possesses three less-elevated protuberances at the middle on each side.
Var. angulosa (Hantzscli) West & G. S. West. (Pl. L, figs. 3, 4.)

Didymidium (Micrasterias) angulosum (Hantzscli) Reinsch, Algenfl. Frank. 1867, p. 147, t. 8, f. 2.

Helierella angulosa kuntze, Revis. gen. plant. 1891, p. 898.

Micrasterias denticulata Brèb. var. angulosa (Hantzscli) W. & G. S. West, Alg. N. Ireland, 1902, p. 30.

Cells more angular than in the type, often relatively broader near the poles; lateral lobes only divided by primary and secondary incisions, the four subdivisions being truncate with rounded angles, retuse, or retuse-emarginate. Cell-wall distinctly and densely punctate.

Zygospore very similar to that of the type.

Length 210–282 μ; breadth 184–230 μ; breadth of isthmus 30–33 μ; thickness 54 μ; diam. of zygospore without spines 114–116 μ; length of spines 32 μ.

WALES.—Capel Curig (Cooke & Wills) and Rhyddu!, Carnarvonshire.

SCOTLAND.—Sutherland!, Ross!, Inverness, Aberdeen, Kincardine, Forfar!, Perth!, Argyll; zygospores from Slewdrum, Aberdeen (Roy & Bissett).

IRELAND.—Lough Akibbon, Donegal! Near Oughterard, Galway! Slieve Donard, Down! Dublin, Wicklow, and Westmeath (Archer).

This variety has been regarded by some authors as a species, but the distinctions between it and _M. denticulata_ are too slight and variable to warrant this separation. It only differs from typical _M. denticulata_ in the angularity of the lateral lobes, which are not subdivided to so great an extent. The ultimate divisions of these lobes are also more rounded, but this feature is a very variable one.
Var. angusto-sinuata Gay. (Pl. L, fig. 5.)

Cells more angular than in the type, with *all the incisions closed and very narrow*; subdivisions of lateral lobes variable, generally retuse and rounded.

Length 260 μ; breadth 186 μ; breadth of isthmus 30 μ.

England.—Loughrigg, Westmoreland!

Scotland.—New Galloway, Kirkcudbright!

Geogr. Distribution.—France.

This variety should perhaps be placed as a synonym of var. angulosa. It includes those angular forms in which the incisions are closed and linear. It is no doubt much more generally distributed than is indicated by the localities, but has been overlooked.

Var. notata Nordst. (Pl. L, fig. 6.)

Polar lobe with a pair of small teeth on each side of the median notch; semicells from the vertical view with slightly-undulate margins and with a prominent, somewhat acute papilla at the middle on each side.

Length 232–282 μ; breadth 200–220 μ; thickness 74 μ.

England.—Terrington, N. Yorks!

Scotland.—Not uncommon (*Roy & Bissett*). Sutherland!

This variety may also have a much wider distribution than is here indicated.

Var. subnotata West. (Pl. L, fig. 7.)

M. denticulata var. subnotata West, Alg. Eng. Lake Distr. 1892, p. 722, t. 9, f. 5.

Polar lobe with a small tooth on each side of the
Median notch; semicells in vertical view lanceolate-fusiform, with acuminate poles, and a broad, rounded-conical elevation at the middle on each side.

Breadth 170 μ; thickness 50 μ.

England.—Bowness, Westmoreland!

Note.—In Cooke’s ‘British Desmids’ on Pl. XLVII is figured (fig. 5) “M. denticulata var. licmoïdes Wills,” but no description of this form is given. It has both polar lobe and lateral lobes much reduced, and appears to us to be merely a monstrosity produced by rapid cell-division. Imperfectly developed semicells lobed in the manner of “var. licmoïdes” are not uncommonly met with in collections containing large numbers of M. denticulata.

M. denticulata var. intermedia Bennett (‘Freshw. Alg. Hamps. and Devon.’ 1890, p. 6, t. 1, f. 8) is a doubtful form, so imperfectly described and badly figured that it is quite impossible to identify it. There is, moreover, a var. intermedia of this species described by Nordstedt (in Wittr. & Nordst. ‘Alg. Exsic.’ 1880, no. 370).

(Pl. LI, fig. 2.)

Cells large, about 1 ½ times longer than broad, octangularly elliptic, very deeply constricted, sinus narrowly linear; semicells 5-lobed, incisions narrowly linear; lateral lobes somewhat unequal and broadly cuneate, upper ones slightly broader than lower ones; lobulation similar to that of M. denticulata, ultimate divisions more rounded in the upper lateral lobes than in the lower ones; polar lobe similar to that of M. denticulata. Vertical view linear-oblong, with acute poles and deeply undulate sides. Cell-wall of a brownish colour, with numerous small subgranulate protuberances scattered over its surface; the three largest in a transverse row near the median base of
the semicells are minutely lobed (or granulated); with about four smaller and somewhat indistinct protuberances completing the transverse row across the base of the semicell; four smaller protuberances are also subradiately disposed on the polar lobe, five on each of the upper lateral lobes, and two on each of the lower lateral lobes, but the number of these protuberances is subject to variation.

Zygospore unknown.

Length 210 μ; breadth 180 μ; breadth of isthmus 29 μ.

Geogr. Distribution.—United States.

We have not seen this species, but Mr. James Murray submitted a drawing for our inspection of a specimen of Micrasterias from Loch Ness which could certainly be referred to M. verrucosa.

Roy and Bissett state that "it is not granulated in the ordinary sense; the prominences seem flattened, and their margins cut into rounded segments, similar to the stigma of a species of Poppy, only more deeply cut."

14. Micrasterias Thomasiana Arch.

(Pl. LI, figs. 3–6.)

Helierella Thomasiana Kuntze, Revis. gen. plant. 1891, p. 899.

Cells rather large, suborbicular, very deeply constricted, sinus narrowly linear; semicells 5-lobed,
incisions between the lobes very narrow and linear; polar lobe narrowly cuneate with concave sides, not projecting, apical margin generally slightly retuse, with a fairly deep median notch, angles on each side of median notch apiculate, outer angles commonly emarginate (sometimes only apiculate); lateral lobes fairly equal and broadly cuneate, with a deep and linear primary incision dividing each lobe into two equal lobules, each lobule with a secondary incision (not very deep) and generally with two tertiary incisions, four ultimate divisions of each lobule emarginate or bidentate (sometimes the tertiary divisions are absent so that each lobule is only subdivided into two parts, which are then tridentate or quadridentate); with three projections across the base of the semicells, the middle one conical and rounded or apiculate, the lateral ones attenuated and elongate, curved outwards, and emarginate or bidentate at their apices; with a conical tooth within the base of each lateral lobe and one within the base of each lateral lobule, also with two, one above the other, within the lower half of the polar lobe, all these teeth being directed outwards. Side view of semicell narrowly pyramidate, with a rounded basal inflation on each side, apex truncate, lateral margins each with two outwardly-directed, acute projections. Vertical view fusiform, poles acute, with three projections on each side towards the middle, the median projection conical and obtuse or apiculate, the lateral projections very much curved towards the poles and generally bidentate, lateral margins towards the poles serrate. Cell-wall smooth or delicately punctate.

Zygospore globose, furnished with stout, furcate spines.

England.—Angle Tarn, Cumberland! Bowness, Westmoreland! (Bissett). Malham Tarn Bog, W.
Yorks! Pilmoor and Terrington, N. Yorks! Near Cockley Beck, Lancashire! Chobham and Thursley Commons, Surrey!

Ireland.—Lough Akibbon, Donegal! Glen Caragh and Cloonee Lough, Kerry! Dublin and Wicklow (Archer).

This species, which in its type form is so characteristic, is one of the most variable in the genus. The relative size of the basal projections, and the number and disposition of the surface-teeth are very variable, and it is sometimes difficult to obtain two individuals which agree in these respects.

M. Thomasiana has a greater affinity with *M. denticulata* than with *M. rotata*, and some authors have placed it as a form of that species. It is smaller than *M. denticulata*, the lobulation is more acute, and it differs in a striking manner in the projections present at the base of the semicells, as well as in the teeth within the bases of the lobes and lobules. It must be borne in mind, however, that these characters are not constant. The teeth within the lobules are generally reduced in number and somewhat irregular in their disposition, and it is not unusual for the median basal projection to be entirely absent. Such forms are figured in G. S. West, 'Variation Desm.' 1899, t. 9, figs. 6 and 7.

Individuals are frequently met with in which the basal projections are much reduced, and the surface-teeth are scarcely evident. These constitute an intermediate series of forms between *M. denticulata* and *M. Thomasiana*. Such a form is figured on Pl. LI, fig. 7.

Forma major West.

Cells about half as large again as the type.

Length 315 μ; breadth 285 μ; breadth of isthmus 38 μ.

Ireland.—Arderry Lough, Galway!
Large specimens (over 300 μ in length) were frequent in the above-mentioned lake. The largest form we have seen from the United States measured:—length 271 μ; breadth 230 μ; breadth of isthmus 28 μ.

(Plate LII, figs. 1-9.)

Didymidium (*Micrasterias*) *furcatum* C.furcatum Reinsch, Algenfl. Frank. 1867, p. 144.

M. furcata Ralfs var. *decurta* Turn. New and Rare Desm. 1885, p. 936 t. 16, f. 10.

H. *pseudofurcata* Kuntze, l. c. p. 899.

M. furcata β *gracillima* Turn. l. c. f. 5 b.

M. furcata γ *expansa* Turn. l. c. f. 5 c.

Cells of medium size, usually a little longer than broad (but sometimes broader than long), very deeply constricted, sinus widely open with an acute apex; semicells 5-lobed, incisions between the lobes wide and fairly deep; polar lobe with subparallel sides in the lower half, dilated upwards, with each angle produced into a long, narrow, diverging process with a deeply-furcate apex; lateral lobes commonly equal, but subject to great variation, normally divided into two long, medium segments. A lobe here and there may be broad and subparallel for some way distal from the isthmus. Cells usually of two kinds, one longer than the other, the proportion of which varies in different specimens.
narrow, diverging lobules (similar to the processes of the polar lobe) with deeply-furcate apices; sometimes one or both lateral lobes are simple and undivided. Side view of semicell ovate-lanceolate, apex produced. Vertical view narrowly subrhomboid, with produced and acuminate poles. Cell-wall smooth or finely punctate.

Zygospore unknown.

Length 123–195 μ; breadth 113–186 μ; breadth of isthmus 17–30 μ; breadth of polar lobe (maximum) 65–92 μ; thickness 27–30 μ.

Wales.—Capel Curig, Carnarvonshire! (Cooke & Wills). Dolgelly, Merioneth (Ralfs).

Scotland. — Plankton of Loch nan Cuinne! (J. Murray), and of Loch Shin!, Sutherland. Rhiconich, Sutherland! Plankton of Loch Fadaghoda, Lewis, Outer Hebrides!

Ireland.—Near Lough Magrath, Donegal! Derryclare Lough, Glendalough, and small loughs between Clifden and Roundstone, Galway!

Ralfs, in 1844, described and figured what he imagined was the same species as Microasterias melitensis Menegh. The latter was originally described as Euastrum Crux-melitensis by Ehrenberg in 1832, and is now known as Microasterias Crux-melitensis (Ehrenb.) Hass.

The first person to recognize that Ralfs’ plant was different from M. Crux-melitensis was Hassall, and in his ‘British Freshwater Algae’ in 1845 he named it M. radiata. Hassall’s description is fairly good, but his figure is wretched. He distinctly states, however, that his name M. radiata is given to the same plant as that described and figured by Ralfs in 1844 under the name of M. melitensis.

In 1848, in his ‘British Desmids,’ Ralfs placed Microasterias radiata Hass. and his own M. melitensis as synonyms of “Microasterias furcata Ag.” Agardh’s description of M. furcata (in ‘Flora,’ 1827, p. 643) is very brief, and reads thus: “Microasterias furcata, radiis pluries furcatis obtusis.” From such an imperfect description it is quite impossible to be sure of
the identity of any of the known species of *Micrasterias*, but, fortunately, some of Agardh’s original specimens have been examined by Nordstedt, and a drawing of one of them by Turner. These have been shown beyond a doubt to be *M. rotata* (Grev.) Ralfs, and *M. denticulata* Brèb., two species which were not differentiated until many years after the publication of Agardh’s *M. furcata*. Thus, Ralfs was greatly in error when he referred *M. radiata* Hass. to *M. furcata* Ag., and *M. radiata* Hass. remains as the first name given to the characteristic *Micrasterias* which has been generally referred to either as “*M. furcata* Ag.” or “*M. furcata* Ralfs.”

M. radiata Hass. is more variable in the subdivision of the lateral lobes than any other species of the genus. This was admirably shown by Johnson (‘Bot. Gazette,’ 1894, pp. 58–60, pl. vi, figs. 7–14), and after examining numerous American forms of this species, we thoroughly agree with him that *M. pseudofurcata* Wolle, *M. furcata* var. *decurta* Turn., and *M. furcata* var. *simplex* Wolle, are merely forms of *M. radiata* between which it is impossible to discriminate. It is not uncommon to find that one semicell represents typical *M. radiata* and the other semicell of the same plant represents *M. pseudofurcata*. This variation is of far commoner occurrence in the United States than in the British Islands, possibly because *M. radiata* is much more generally distributed in the United States than in this country. In Britain we have only met with this notable variation of the lateral lobes in the Scottish plankton, and it is possible that the variation is largely due to rapidity of cell-division.

Forms are occasionally met with in which the superior lateral lobules (or even the superior lateral lobes) are upwardly curved towards the processes of the polar lobe (Pl. LIII, fig. 6). Similar forms have also been seen from America (*vide* W. & G. S. West, ‘Some Desm. of the U.S.’ 1898, p. 295, fig. xylogr. 2 a).

M. radiata should never be confused with *M. Crux-melitensis*, a species to which it only bears a superficial resemblance. The lobulation is deeper, and the lobules are much more elongate and bifurcate. It is also a larger species.

In some specimens the lobules are of great length, approaching a plant described by Wolle as *M. dichotoma*. We give a figure of one of these forms (Pl. LIII, fig. 7).

The lateral lobules are sometimes entire and apiculate, and occasionally they are furcate in a plane at right angles to the principal plane of the cell (*vide* Pl. LIII, figs. 8 and 9).

(Pl. LIII, figs. 1–3.)

M. Crux-melitensis var. *superflua* Turn. *Some New and Rare Desm. 1885, p. 936, t. 15, f. 11.*

Cells of moderate size, a little longer than broad, very deeply constricted, sinus open with acute or linear apex; semicells 5-lobed, interlobular incisions widely open, those on each side of the polar lobe much deeper than those between the superior and inferior lateral lobes; polar lobe subquadrate in its lower half, upper half dilated, apex widely retuse, angles produced into short diverging processes with emarginate-bidentate apices; lateral lobes divided into two short, slightly diverging; elongate-quadrate lobules, emarginate-bidentate (sometimes tridentate or quadri-dentate with a median notch) at the apex. Vertical view subrhomboid-elliptical, with slightly produced poles. Cell-wall smooth or very delicately punctate.

Zygospore unknown.

Length 107–126 μ; breadth 98–118 μ; breadth of isthmus 16–19 μ; breadth of polar lobe (maximum) 35–43 μ.

WALES.—Dolgelly, Merioneth (Ralfs).

SCOTLAND.—Scotston Moor, Brimmond, near Old Meldrum, Slewdrum, Birsemore Loch, Tomachar, and Homehead in Cromar, Aberdeen; near Cammie in Strachan, Kincardine; Clova Tableland, Forfar; Durdie, Perth (Roy & Bissett).

IRELAND.—Creggan Lough, Ballynahinch, and loughs near Recess, Galway! Dublin and Wicklow (Archer).

The variation of this species is principally confined to the subdivisions of the lateral lobes. The two lobules of each lateral lobe are normally somewhat truncate and bidentate, but occasionally some or all of the lobules are tridentate or even further divided by a fairly deep notch into two bidenticate parts. One of these forms is figured on Pl. LIII, fig. 3, and Turner described another under the name of "var. superflua."

M. Crux-melitensis is a rare species, easily distinguished from M. radiata by its smaller size, and the much shorter and stouter lobules, which are never deeply furcate.

Forma punctulata West.

Cell-wall irregularly punctulate (or subgranulose), causing the outline of the cell to appear minutely papillate.

Length 122 μ; breadth 115 μ; breadth of isthmus, 21 μ.

ENGLAND.—Near Bowness, Westmoreland!

17. Micrasterias Americana (Ehrenb.) Ralfs.

Cells of medium size, about $1\frac{1}{6}$ times longer than broad, subhexagonal, very deeply constricted, sinus somewhat open, towards the apex acute; semicells 5-lobed (sometimes almost 3-lobed owing to shallow incision between the lateral lobes); polar lobe large, broad, and outstanding, cuneate from the base upwards (rarely subquadrate in the basal part), apical margin widely retuse, angles each produced into a thick divergent process with a truncate-denticulate apex, from near the base of each process a second accessory process arises, similar but smaller, and the two accessory processes are disposed asymmetrically one on each side of the polar lobe; incisions on each side of polar lobe widely open; lateral lobes rather small, incision between them open and not very deep, the two lobes of each side being together trapezoid in form, each lobe divided into two lobules by a wide and shallow notch, the two proximate lobules being smaller than the two distal lobules, lobules with three or four teeth at the extremity and dentate along their inner margins. Semicells with a few more or less scattered granules arranged on a small protuberance in the middle above the isthmus, with about four very large, acute granules within the apical margin of the polar lobe, and with a number of scattered smaller granules on the surface of both polar
and lateral lobes. Side view of semicell ovate-pyramidate, with a small granulate basal inflation, and showing the asymmetrical apical processes. Vertical view rhomboid-fusiform, with a small granulate protuberance at the middle on each side, poles produced and truncate-denticulate, polar lobe showing the asymmetrical disposition of the apical processes.

Zygospore unknown.

Length 125–160 μ; breadth 100–145 μ; breadth (maximum) of polar lobe 63–75 μ; breadth of isthmus 17–22·5 μ.

Wales.—Capel Curig! (Cooke & Wills), Snowdon!, Carnarvonshire. Dolgelly, Merionethshire (Ralfs).

Scotland.—Scotston Moor, Powlair, Birsemore, Slew-drum, Morven, Lochnagar, and Corrie of Loch Cean-mhor, Aberdeen; Glen Dye and Clochnaben, Kincardine; Lundie Bog near Menmuir, Forfar (Roy & Bissett). Glen Shee and Glas Maol, Perth! Plankton of Loch Doon, Ayr! Loch Ness! (J. Murray), and plankton of Lochs Shiel and na Cloiche Sgòilt!, Inverness.

Ireland.—Dublin and Wicklow (Archer). Carrantuohill, Kerry.

M. Americana is principally characterized by the form of its lateral lobes. It has a wide distribution in the British Islands, but is an uncommon species.

Var. recta Wolle. (Pl. LIV, fig. 4).

Extremities of lateral lobes and polar lobe rounded, not denticulate; apex of polar lobe almost straight
and slightly undulate, accessory processes reduced and rounded; incision between the two lateral lobes narrowly linear.

Length 117 μ; breadth 98 μ; breadth (max.) of polar lobe 55 μ; breadth of isthmus 19 μ.

England.—Mickle Fell, N. Yorks!
Wales.—Near Dolbadarn Castle, Carnarvonshire!

Geogr. Distribution.—United States.

Var. Lewisiana West. (Pl. LIV, figs. 5, 6.)

Smaller than the type; polar lobe shorter and stouter, lateral angles short and thick, with tricrenate apices, apical margin almost straight, very slightly retuse in the middle, accessory processes wanting, or represented by very small, rounded protuberances; lateral lobes with the margins crenate (not dentate). Cell-wall distinctly punctate.

Length 95–100 μ; breadth 72–85 μ; maximum breadth of polar lobe 48–54 μ; breadth of isthmus 16–17.5 μ.

Wales.—Llyn Padarn, Carnarvonshire!

Geogr. Distribution.—United States.

This characteristic variety can be recognized at once by the form of the polar lobe. The dimensions of the American specimens were: length 80–103 μ; breadth 70–84 μ; breadth of isthmus 23–26 μ.

Var. Boldtii Gutw. (Pl. LIII, fig. 6.)

Polar lobe shorter than in the type, lateral angles produced into very short processes, apical margin very slightly concave, accessory processes much reduced, sometimes wanting on one or both semicells; lateral lobes more irregularly dentate.

Length 110–137 μ; breadth 96–111 μ; maximum
breadth of polar lobe 53–65 \(\mu\); breadth of isthmus 25–26 \(\mu\); thickness 48 \(\mu\).

England.—Mickle Fell, N. Yorks.

Geogr. Distribution.—Greenland. Galicia in Austria.

18. Micrasterias Mahabuleshwarensis Hobson.

Helierella Mahabuleshwarensis Kuntze, Revis. gen. plant. 1891, p. 899.

Cells moderately large, about \(1\frac{1}{6}\) times longer than broad, very deeply constricted, sinus open with an acuminate apex; semicells 3-lobed, incision between lateral lobes and polar lobe very wide; polar lobe large and outstanding, lower half subquadrate, upper half dilated, with the angles produced into diverging (sometimes almost horizontal), denticulate processes of considerable (and variable) length, with a pair of accessory denticulate processes disposed asymmetrically, one at the front and one at the back near the base of each lateral process, apical margin straight, slightly convex, or slightly concave, generally with several large granules (or short, acute spines) within the margin; lateral lobes deeply divided into two lobules by a wide acute-angled incision, each lobule in the form of an attenuated denticulate process; apices of all the processes tri- or quadridenticate; semicells in the middle above the isthmus furnished with a small granulate or denticulate protuberance, with a row of denticulations within the lateral lobes (sometimes with several scattered series) and within the lateral margins of the polar lobe, these series generally extending to the basal protuberance. Side view of semicell narrowly oblong-ovate, with a small basal inflation on each side, apex showing the asymmetrical disposition of the four pro-
cesses. Vertical view rhomboid-fusiform, poles attenuated and tridenticulate, at the middle on each side with a small granulate or denticulate protuberance, polar lobe showing very clearly the disposition of the four processes.

Zygospore unknown.

Length 151-220 μ; breadth 135-190 μ; maximum breadth of polar lobe 75-100 μ; breadth of isthmus 19-22 μ; thickness 40-47 μ.

This species is principally tropical and subtropical in its distribution, and the typical form has not so far been met with in the British Islands. It is subject to great variation in the length of the processes, both of the polar and lateral lobes, in the amount of their divergence, and in the details of the surface-markings. The lateral lobules are often subdivided, and the subdivision is exceedingly variable. This has resulted in the naming of numerous varieties.

Var. Wallichii (Grun.) nob. (Pl. LIV, figs. 7, 8; Pl. LV, figs. 1-3.)

Didymidium (Micrasterias) Hermanniana Reinsch, Algenfl. Frank. 1867, p. 141, t. 8, f. 1.

M. ampullacea Mask. N. Zeal. Desm. 1881, p. 304, t. 11, f. 6-8 [M. Mahabaleshwarensis β ampullacea Nordst 1888].

M. Mahabaleshwarensis Hobson A. genuina a. indica Nordst. Freshw. Alg. N. Zeal. 1888, p. 31 [also various other forms].

Helierella Wallichii Kuntze, Revis. gen. plant. 1891, p. 899.

Micrasterias Wallichii f. typica Turn. Freshw. Alg. E. India, 1893, p. 95, t. 6, f. 1.

M. Wallichii f. major Turn. l. c.

M. Wallichii var. Hermanniana (Reinsch) Turn. l. c. [various forms, including M. ampullacea Mask].

This variety is distinguished by the subdivision of the superior lateral lobules, each of which is divided by
a deep and wide incision. There are thus three denticle processes to each lateral lobe, the lowermost one being somewhat larger than the two upper ones.

Dimensions of British specimens: — length 181–223 μ; breadth 153–188 μ; maximum breadth of polar lobe 88–115 μ; breadth of isthmus 30–33 μ; thickness 48–5 μ.

Dimensions given by various authors: — Length 132–224 μ; breadth 115–208 μ.

SCOTLAND.—In the plankton of Loch nan Eun and Loch Bhaic!, Perthshire; Lochs Ruar! and nan Cuinne, Sutherland; Lochs Burraland and Littlester, Shetlands (J. Murray).

After a careful comparison of specimens of M. Mahabuleshwarensis from divers parts of the world, it appears to us that there is one variety, which although in itself very variable, yet retains certain distinctive features. This variety is distinguished by the subdivision of the superior lateral lobules, so that there are three lateral processes instead of the two which are found in the more typical forms. The relative length, thickness, and divergence of these processes is exceedingly variable, but the presence of the three processes in place of two is a character the use of which is quite justifiable as a varietal distinction. It was originally described as Micrasterias Wallichii by Grunow, but a comparison of its different forms with those in which the superior lateral lobules are undivided shows conclusively that it can only be considered as a variety of M. Mahabuleshwarensis.

In the British Islands, M. Mahabuleshwarensis var. Wallichii has only been found in the plankton of certain Scottish lochs, and the credit of this discovery rests entirely with Mr. James Murray of the Scottish Lake Survey. In some cases the specimens were subject to great variation, and this was especially the case in Loch Bhaic, Perthshire. The variation was principally in the duplication of the lateral processes. In some individuals the upper process of the superior lateral lobules was duplicated (vide Pl. LV, fig. 2), and in others the lower process was similarly doubled. A few individuals showed a duplication of the large processes of the polar lobe (vide Pl. LV, fig. 3). This curious abnormal state, with six
processes on the polar lobe, was first mentioned by Lundell (‘Desm. Suec.’ 1871, p. 15). The figure we give of this form also shows the lobulation of typical *M. Mahabuleshwarensis* on one side of the semicell and that of the var. *Wallichii* on the other. This in itself is conclusive proof that the Desmid originally described as *Micrasterias Wallichii* is only a variety (in some localities well established) of *M. Mahabuleshwarensis*.

Species to be inquired into.

Micrasterias cornuta Benn. (Pl. LI, fig. 1.)

Cells large, deeply constricted, sinus narrowly linear; semicells with a large projecting polar lobe, the angles of which are bluntly rounded and the apex deeply concave; lateral lobes (according to Bennett’s figure) three on each side, separated by two narrow and not very deep primary incisions, each lobe divided by a narrow secondary incision into two lobules, each lobule rounded-truncate with a median emargination or incision.

Length 355 μ; breadth 305 μ.

England.—Stream between Codale and Stickle Tarns, Westmoreland, at an elevation of about 1,800 ft. (Bennett).

We do not think Bennett’s figure of this *Micrasterias*, of which we give a copy, is a correct one. No known species of the genus possesses lateral incisions of the nature he has figured. Had the lower of the two deepest lateral incisions been made much deeper, this would have given a lobulation somewhat comparable with that of *M. rotata*. Taking into consideration the great inaccuracy of most of Bennett’s published figures, we should imagine that the Desmid he had under observation when he made his drawing was a large, and possibly an abnormal form of *M. rotata*.
Genus 15. **Cosmarium** Corda, 1834.

Corda in Alm. de Carlsbad, 1834.
Ralfs, Brit. Desm. 1848, p. 91.
De Bary, Conj. 1858, p. 72.
Arch. in Pritch. Infus. 1861, pp. 720, 731.
Cooke, Brit. Desm. 1886, p. 79.
De Toni, Syll. Alg. 1889, p. 931.

Cells very variable in size, usually a little longer than broad (sometimes $1\frac{1}{2}$ times or rarely about twice as long as broad), generally somewhat compressed, symmetrical in three planes at right angles to each other; constricted in the middle, often deeply, but sometimes very slightly; semicells very variable in outline, elliptical, subcircular, semicircular, subquadrate, or truncate-pyramidate, apex rounded, truncate or subtruncate, without an apical incision, centre of the semicell sometimes protuberant; vertical view elliptic, subelliptic, or oblong (rarely circular), often with a protuberance (sometimes more than one) at the middle on each side. Chloroplasts usually axile, one in each semicell, with four curved longitudinal plates and a large central pyrenoid, or with two large pyrenoids transversely disposed; in a few species parietal, 4–8 in each semicell, with one or more pyrenoids in each chloroplast. Cell-wall smooth, punctate, scrobiculate, granulate, verrucose, or papillate, the various markings usually being arranged in a definite pattern.

Zygospores very variable, globose, ellipsoid, or quadrrate in form, smooth, scrobiculate, papillate, or furnished with furcate, or more rarely simple, spines.

The genus *Cosmarium* is the largest of the genera of Desmids, and includes several hundred species. One of the
distinguishing features of a *Cosmarium* is the *entire* outline of the cells, which are likewise destitute of spines. There is no lobulation of the margin of the semicells at all comparable to that which forms such a feature of most species of *Euastrum*, and there is a complete absence of an apical notch.

Among the large number of species at present included in the genus there are several transitional forms which could almost equally well be referred to other genera. A few are closely related to certain species of *Euastrum*, and others can scarcely be distinguished from some of the constricted species of *Penium*. Spines are as a rule absent from species of *Cosmarium*, but a few of the smaller species closely approach the genus *Xanthidium* in the possession of minute, marginal or submarginal spines.

Kuntze (‘Revis. gen. plant.’ 1891, p. 922) revived the name *Ursinella* Turpin (‘Aperçu organograph.’ 1828, p. 316) which he substituted for *Cosmarium* Corda (1834). Turpin’s description is exceedingly bad and scarcely applies to the genus *Cosmarium* as now understood. For this reason the name “*Ursinella*” has been universally rejected. *Vide* Nordst. in ‘Hedwigia,’ 1893, p. 152.

Several attempts have been made to subdivide the genus by the character and disposition of the chloroplasts. Lundell (1879) instituted the subgenus *Pleurotenuiopsis* to include those species of *Cosmarium* with parietal chloroplasts, and in 1887 Lagerheim placed it as a genus. Gay (1884) also described the genus *Cosmaridium* to include *Cosmarium Cucumis*, a species characterized by its parietal chloroplasts. With regard to the chloroplasts in the genus *Cosmarium*, it must be borne in mind that the axile condition is unquestionably the primitive one, and that the parietal condition has been independently acquired by a few scattered species of the genus. The removal of these species from all their nearest relatives and their inclusion in a separate genus is very inexpedient, as it results in the association of species having no affinity with each other and which are not in any way closely related. Moreover, as transitional conditions are sometimes observed between truly axile and truly parietal chloroplasts (*vide* Pl. LX, fig. 4), the disposition of the chloroplasts cannot well be taken as a basis for the primary subdivision of the genus.

Many of the slightly constricted species have been placed by various authors in the genus *Dysphinctium* Nüg. (1849). This genus, with which must be identified *Calocylinthus* (Nüg.) Kirchn. (1878), has been differentiated from *Cosmarium*
cosmarium.

by the subcylindrical cells (in vertical view circular), by the slight median constriction, and by the absence of a basal inflation of the semicells. Circular vertical views are, however, met with along with every possible grade of constriction (cfr. C. annulatum, C. subturgidum, C. moniliforme, C. globulatum, and C. Welwitschii), and species are known, which, although but faintly constricted, yet possess an elliptical vertical view (cfr. C. anceps, C. Ooeystidium). It would be unwise to fix an arbitrary depth of constriction, and to include all those species more constricted than the demarcation limit in the genus Cosmarium and those less constricted in the genus Dysphinctium. Yet, there is no other way of clearly defining Nägeli's genus. Those authors who most strongly uphold the retention of Dysphinctium as a genus are not agreed on the species which should be included in it. One also finds Cosmarium speciosum referred to Dysphinctium, and its nearest relative, C. subspeciosum, retained in the genus Cosmarium. Considering all these facts, we have thought it best not to adopt a genus which is based upon indefinite characters and the limitations of which could not be clearly defined. Moreover, opinion would always remain divided with regard to the inclusion of many species in Dysphinctium or their retention in Cosmarium.

The arrangement of the numerous species of Cosmarium in the present volume is a purely artificial one, but one which we think will best meet the requirements of the student. We have divided the genus into two large groups, a section with smooth cell-walls and a section with rough cell-walls. This arrangement will be of great assistance to the student in running down a species, and at the same time it allows of the grouping together of species with close affinities. Of course, the terms "smooth" and "rough" are only relative, and there are a few species which might equally well be placed in either section. The primary subdivisions of the sections are in all cases based upon the external form of the semicells as seen in front view.

Division I. Cell-wall smooth, punctulate, or scrobiculate, outline never granulate, margins sometimes undulate or crenate.

Division II. Cell-wall granulate, verrucose, or papillate.

As the genus is so very large we have divided the synopsis of species into two parts, the first part being placed before the descriptions of the smooth species and the second part immediately before the descriptions of the rough species.
Division I. Cell-wall smooth, punctulate or scrobiculate, outline never granulate, margins sometimes undulate or crenate.

Section A. Semicells semicircular, semi-elliptical, or subsemicircular in outline.

* Semicells semicircular or subsemicircular in outline; cells about as long as broad or a little longer than broad rarely 1½ times longer than broad.

† Margin of semicells entire.

† Semicells with a blunt tooth or submamillate thickening at the basal angles.

1. *C. obsoletum.*
2. *C. Smolandicum.*

+++ Semicells without any mamillate thickening at the basal angles.

§ With no prominent scrobiculations in the centre of the semicells.

3. *C. taxichondriforme.*
4. *C. circulare.*
5. *C. Lundellii.*
6. *C. pachydermum.*
7. *C. Ralfsii.*

§§ With several prominent scrobiculations in the centre of the semicells.

8. *C. perforatum.*
9. *C. ocellatum.*

†† Margin of semicells undulate.

10. *C. cyclicum.*
11. *C. fontigenum.*
12. *C. undulatum.*

** Semicells semi-elliptical in outline; cells 1½—2 times longer than broad.

† Margin of semicells undulate.

†† Margin of semicells entire.

‡ Constriction moderately deep.

14. *C. Cucumis.*
15. *C. subcucumis.*

+++ Constriction slight.

§ Sinus linear.

16. *C. microspinhinctum.*

§§ Sinus open.

17. *C. morsum.*

Section B. Semicells transversely elliptical, oblong-elliptical, or reniform in outline.

* Semicells elliptic-reniform; sinus closed.

† Isthmus narrow; vertical view with a protuberance on each side.

§ Apex of semicell entire.

18. *C. Phaseolus.*
19. *C. tumidum.*
§§ Apex of semicell with a slight notch.

20. *C. Trafalgaricum.*

†† Isthmus broader; vertical view elliptic.

21. *C. melanosporum.*

** Semicells elliptical or elliptic-oblong in outline; sinus open.

22. *C. aspherosporum.*
23. *C. inconspicuum.*
24. *C. bioculatum.*
25. *C. tenue.*
26. *C. tinctum.*
27. *C. flavum.*
28. *C. contractum.*
29. *C. subcontractum.*
30. *C. suboversum.*

** Semicells narrowly elliptical or elliptic-oblong, depressed.
† Cells with a granule on each side of the sinus.

31. *C. tetrachondrimum.*

†† Cells destitute of granules.

32. *C. depressum.*
33. *C. subquadrans.*

Section C. Semicells distinctly pyramidate or subpyramidate in outline, usually truncate.

* Margin of semicells entire, not crenate or undulate.
† Semicells pyramidate, lateral margins retuse or sub-retuse, very rarely straight.
‡‡ Apex of semicells truncate or subtruncate.

§ Basal angles broadly rounded.

34. *C. succisum.*
35. *C. subretusiforme.*
36. *C. retusiforme.*
37. *C. Hammeri.*
38. *C. Nymannianum.*

§§ Basal angles rectangular.

39. *C. trilobulatum.*
40. *C. granatum.*
41. *C. Pokornyanum.*

‡‡ Apex of semicells very convex.

42. *C. pseudatlantlwideinn.*

†† Semicells pyramidate, lateral margins convex, rarely straight.
‡ Cells never more than 1 1/2 times longer than broad.

§ Semicells pyramidate-semicircular.

43. *C. subtumidum.*

§§ Semicells pyramidate-trapeziform.

44. *C. galeritum.*
45. *C. pseudonitidulum.*
46. *C. nitidulum.*
++ Cells 1\(\frac{1}{3}\)-1\(\frac{2}{3}\) times longer than broad.
47. *C. canaliculatum.*
48. *C. pyramidatum.*
49. *C. pseudopyramidatum.*
50. *C. variolatum.*

** Margin of semicells undulate or crenate.
† Semicells constricted and crenate just below the apices.
51. *C. Holmiense.*
52. *C. cymatopleurum.*

++ Semicells with the lateral margins undulate or crenate.
‡ Apex of semicells without undulations.
53. *C. obtusatum.*
54. *C. venustum.*
55. *C. Garrolense.*
56. *C. Reinschii.*

++ Apex of semicells often slightly undulate.
57. *C. Nagelianum.*
58. *C. notabile.*
59. *C. tetragonum.*

** Section D. Semicells circular or subcircular (rarely almost semicircular) in outline.
* Constriction fairly deep.
60. *C. moniliforme.*

** Constriction slight.
† Margin of semicells entire.
‡ Cells large or of medium size (47-102 \(\mu\) in length).
61. *C. alpestre.*
62. *C. connatum.*
63. *C. pseudoconnatum.*

++ Cells small (15-34 \(\mu\) in length).
64. *C. globosum.*
65. *C. subarctoum.*
66. *C. pseudarctoum.*

†† Margin of semicells undulate.
67. *C. pericymatium.*

** Section E. Semicells more or less rectangular or subrectangular (rarely subpyramidal).
* Margin of semicells crenate or undulate.
† Cells minute, sinus widely open.
68. *C. Novoe Semliæ.*
69. *C. Regnesi.*
70. *C. cymatotonotophorum.*

†† Cells larger, sinus linear.
71. *C. rectangulum.*

** Margin of semicells entire.
† Constriction very slight.
72. *C. arctoum.*
Constriction moderately deep or deep.

Lateral margins of semicells concave (rarely straight).

Cells about twice as long as broad.
73. *C. sinuosum.*
74. *C. tatricum.*
75. *C. anceps.*

Cells about as long as broad, or a little longer.

a. Vertical view obliquely elliptical.
76. *C. obliquum.*

β. Vertical view elliptical.
77. *C. Norimbergense.*
78. *C. repandum.*

Lateral margins of semicells straight or convex.

Superior angles of semicells much cut off.
79. *C. rectangulare.*
80. *C. subquadratum.*

Superior angles of semicells rounded.

a. Cells large.
81. *C. quadratum.*
82. *C. plicatum.*
83. *C. Debaryi.*

β. Cells small.
84. *C. exiguum.*
85. *C. pseudexiguum.*

Superior angles of semicells not rounded.
86. *C. minimum.*
87. *C. pusillum.*
88. *C. geometricum.*

Superior angles of semicells produced and submamillate.
89. *C. helcangulare.*

Lateral margins of semicells upwardly diverging.

Vertical view elliptic.
90. *C. coarctatum.*

Vertical view with a prominent protuberance on each side.
91. *C. protuberans.*

Section F. Semicells generally elliptic-hexagonal, subhexagonal, or polygonal in outline.

Semicells distinctly elliptic-hexagonal.

Sinus a shallow notch.
92. *C. Sphagnicolum.*

Sinus deep and widely open.
93. *C. truncatellum.*
94. *C. subcapitulum.*

Sinus linear.

Vertical view with a distinct central protuberance.
§ Lateral angles acute or rounded.
95. C. pygmeum.
96. C. polygonum.
97. C. pseudobireum.
98. C. bireme.
99. C. adoxum.
100. C. Sinostegos.

§§ Lateral angles emarginate.
101. C. abruptum.

+++ Vertical view with no distinct central protuberance.
102. C. sexangulare.
103. C. pseudoprotuberans.
104. C. abbreviatum.

** Semicells subhexagonal or polygonal.
† Angles of semicells produced.
105. C. impressulum.
106. C. umbilicatum.
107. C. perpusillum.
108. C. Regnellii.
109. C. Meneghinii.

+++ Angles of semicells not produced.
110. C. angulosum.
111. C. difficile.
112. C. Clepsydra.

+++ Semicells rounded-polygonal, sometimes almost subcircular.
113. C. leve.

SECTION G. Semicells obversely semicircular in outline, with the lateral angles distinctly produced.
114. C. monochondrum.

SECTION H. Cells subcylindrical or fusiform-cylindrical, with a very slight constriction.
* Cells subcylindrical.
† Lateral margins subparallel.
115. C. Thwaitesii.
116. C. Cucurbita.
117. C. Palangula.
118. C. Subpalangula.
119. C. parvulum.
120. C. goniodes.

+++ Lateral margins not parallel, generally convex.
121. C. viride.
122. C. oblongum.
123. C. Hibernicum.
124. C. turgidum.
125. C. subturgidum.

** Cells fusiform-cylindrical.
126. C. attenuatum.
1. Cosmarium obsoletum (Hantzscli) Reinsch.

Pl. LVI, figs. 1–3.

Didymidium (Cosmarium) obsoletum Reinsch. Algenfl. Frank. 1867, p. 110, t. 9, f. 5.

Ursinella obsoleta Kuntze, Revis. gen. plant. 1891, p. 925.

Cosmarium palustre Turn. Freshw. Alg. E. India, 1893, p. 60, t. 8, f. 65, t. 9, f. 29.

C. palustre var. ovale Turn, l. c. t. 9, f. 1.

Cells of medium size, transversely elliptic, a little broader than long; deeply constricted, sinus narrowly linear with a dilated apex; semicells semi-elliptic (depressed-semicircular), basal angles submamillate and slightly thickened, apex generally slightly flattened. Side view of semicell depressed-globose. Vertical view elliptic, with obtusely conical poles, ratio of axes 1 : 2:1. Cell-wall punctulate (or finely scrobiculate), sometimes slightly thickened in the centre of the semicells. Chloroplasts axile, each with two pyrenoids.

Zygospore unknown.

Length 34–46 µ; breadth 42–54 µ; breadth of isthmus 15–20 µ; thickness 20–24 µ.

England.—Bowness, Westmoreland!
Wales.—Yr Orsedd, Carnarvonshire!

Ireland.—Clogherheen, Kerry!

This species is much more abundant in tropical and subtropical countries than in temperate climates, and it exhibits
a considerable range of variation. There is a thickening of the cell-wall at the basal angles of the semicells which commonly gives them a submamillate appearance.

Some of the tropical forms attain a large size:—length 57–64 μ; breadth 67–75 μ; breadth of isthmus 30–35 μ; thickness 36 μ. In these specimens the thickening of the basal angles is generally prominent, and passing through it is a large conical pore, the wider end of which is towards the interior of the cell-wall. We give a figure of one of these specimens from Singapore to show this character (Pl. LVI, fig. 4). Sometimes the mamillate thickening becomes quite hyaline with the exception of the conical pore, which then stands out very prominently, and has the appearance of a short spine attached to the basal angle. Turner figured this pore as a spine at the angle, and he put forward the name "Cosmarium palustre" for typical specimens of the large form of C. obsoletum which is so abundant in tropical Asia. It is in old individuals in which the cell-wall becomes of a yellow or yellow-brown colour that this "spinate" appearance is most marked. Sometimes the actual thickening of the basal angle has the form of a bluntly-conical mucro. The large tropical forms have recently been named "var. Sitvense" by Gutwinski (‘Alg. Ins. Java,’ 1902, p. 594, t. 38, f. 39), and so far as is known they are characteristic of the Indo-Malay region.

The British specimens are usually of small size and they show no trace of the pore which is present in the basal angles of the large tropical forms. The cell-wall of the smaller forms is finely punctate, but that of the larger forms is somewhat sparsely and finely scrobiculate.

2. Cosmarium Smolandicum Lund.

(Pl. LVI, fig. 5.)

Ursinella Smolandica Kuntze, Revis. gen. plant. 1891, p. 925.

Cells of medium size, subcircular, a little longer than broad, very deeply constricted, sinus somewhat narrow and linear; semicells subsemicircular, apices convex but subtruncate in the middle, basal angles obtuse and furnished with a prominent papilla. Side

Zygospore unknown.

Length 54 μ; breadth 48 μ; breadth of isthmus 12 μ; thickness 28 μ.

The typical form of this species is not known to occur in the British Islands.

Var. angustatum nob. (Pl. LVI, figs. 6, 7.)

A variety with the sinus closed and linear, with the basal angles of the semicells rectangular and the lower part of the sides straight and parallel, and with the apex in the middle subtruncate.

Length 42.5–43.5 μ; breadth 34–37 μ; breadth of isthmus 11–14 μ.

IRELAND.—Carrantuohill, Kerry!

Geogr. Distribution.—Galicia in Austria.

The Desmid described as *Cosmarium obsoletum* var. *angustatum* is much better referred to *C. Smolandicum* Lund. We have examined further specimens from Carrantuohill and find that the figure given in the 'Alg. W. Ireland,' tab. 24, fig. 22, is not a good one. The basal angles of the semicells are rectangular, and the micro at each angle, although less prominent than in the type, projects laterally. The upper angles are also more rounded and the apex is more distinctly truncate. Thus, the specimen found by Gutwinski in Austria, which he named 'C. obsoletum var. *angustatum* forma *galiciensis*,' and about which he remarks: "a forma irlandica differt angulis basalibus alias protractis, angulis superioribus magis rotundatis vel oblique truncatis," must also be referred to *C. Smolandicum* var. *angustatum*. Gutwinski’s measurements of his Austrian specimens (length 40–43 μ; breadth 30.4–35 μ; breadth of isthmus 11–13 μ) agree almost exactly with the dimensions of the Irish forms.
3. Cosmarium taxichondriforme Eichl. & Gutw.

(Pl. LVI, figs. 8–10.)

Cells rather small, as long as broad, circular-hexagonal, deeply constricted, sinus narrow and slightly open; semicells pyramide-semicoloncircular, basal angles very faintly produced and slightly thickened, generally turned downwards. Side view of semicell subcircular, with flattened apices. Vertical view elliptic with produced poles, ratio of axes 1:2. Cell-wall finely punctate. Chloroplasts axile, each with one pyrenoid.

Zygospore unknown.

Length 31–41.5 \(\mu \); breadth 31–47 \(\mu \); breadth of isthmus 10–15 \(\mu \); thickness 17–22 \(\mu \).

England.—Bowness, Westmoreland!

Geogr. Distribution.—Galicia in Austria.

In outward appearance this species bears considerable resemblance to Cosmarium taxichondrum Lund., but is easily distinguished by the entire absence of surface granules and by the presence of only one pyrenoid in the axile chloroplasts.

It still more closely resembles a tropical species, C. nudum (Turn.) Gutw. (= C. taxichondrum var. nudum Turn.), from which it is distinguished by the single pyrenoid in each semicell and by the attenuation of the poles of the vertical view. It should also be compared with C. crassangulatum Borge (‘Süssw. Chlor. Archang.’ 1894, p. 25, t. 2, f. 23).

We have only observed this species from some small water-lily pools near Bowness in the English Lake District.

4. Cosmarium circulare Reinsch.

(Pl. LVI, figs. 11, 13, 14.)

Didymidium (Cosmarium) circulare Reinsch, Algenfl. Frank. 1867, p. 108, t. 10, f. 2.

Ursinella circularis Kuntze, Revis. gen. plant. 1891, p. 924.
Cells large, circular, about as long as broad, deeply constricted, sinus very narrow and linear, dilated at the extremity; semicells semicircular with rounded basal angles. Side view of semicell rounded-ovate or subcircular. Vertical view narrowly elliptic, ratio of axes 1:2-6. Cell-wall punctulate. Chloroplasts axile, each with two pyrenoids.

Zygospore unknown.

Length 54–95 μ; breadth 54–90 μ; breadth of isthmus 22–28 μ; thickness 25–38 μ.

England.—Mickle Fell, N. Yorks!

Wales.—Snowdon, Carnarvonshire!

Scotland.—Loch Ruthven, Inverness; near Loch Mhare, in Athole, Perth (Roy & Bissett).

Ireland.—Creggan Lough, Galway!

C. circulare Reinsch differs from C. Ralfsii Bréb. in the outward form of its cells and in its axile chloroplasts. The semicells of C. circulare are semicircular in outline and never exhibit the pyramidal character which is so conspicuous in C. Ralfsii.

C. circulare is distinguished from C. Lundellii Delp. by its semicircular semicells and its elliptical vertical view. The vertical view of C. Lundellii is drawn out at the poles and is sometimes almost rhomboid-elliptic, whereas that of C. circulare is narrowly elliptic. There is also a thickening of the cell-wall in the centre of the semicells of C. Lundellii which is never present in C. circulare.

Forma minor nob. (Pl. LVI, fig. 12.)

Ursinella Raciborskiana Kuntze, Revis. gen. plant. 1891, p. 925.

Length 33–35 μ; breadth 35 μ; breadth of isthmus 12–14 μ; thickness 19 μ.

Ireland.—Creggan Lough, Galway!

Geogr. Distribution.—Poland.
5. **Cosmarium Lundellii** Delp.

(Pl. LVII, figs. 1, 2).

Ursinella Lundellii Kuntze, Revis. gen. plant. 1891, p. 925.

Cells large, subcircular, about as long as broad (or a little longer), deeply constricted, sinus linear with a dilated apex; semicells subsemicircular or pyramidate-semicircular, basal angles broadly rounded. Side view of semicell subcircular. Vertical view elliptic, ratio of axes 1:1.94, poles slightly drawn out. Cell-wall punctate, generally thickened in the centre of the semicells. Chloroplasts axile, with prominent ridges, and with two large pyrenoids.

Zygospore unknown.

Length 79–88 μ; breadth 69–79 μ; breadth of isthmus 30–41 μ; thickness 42–45 μ.

England.—Mousehole Cave, Cornwall!

This species is much more abundant in the tropics than in temperate climates, and quite a number of distinct varieties of it exist. It differs from *C. Ralfsii* Bréb. in its somewhat smaller size, its less deep constriction and consequently broader isthmus, in the more rounded basal angles of the semicells, and in its axile chloroplasts.

The breadth of the isthmus as compared with the breadth of the semicell is as 1:4.3 in *C. Ralfsii*, whereas in *C. Lundellii* it is only 1:2.5.

Var. ellipticum West. (Pl. LVII, figs. 3, 4.)

Cells smaller than in the type, about 1½ times longer than broad, with a narrower isthmus.
Length 68-73 μ; breadth 53-55 μ; breadth of isthmus 16-21 μ; thickness 26-29 μ.

Wales.—Snowdon, Carnarvonshire (at 3,000 ft.)!
Scotia.—Ben Laoigh, Perthshire!

Compared with its breadth this variety is proportionately longer than any of the other varieties of *C. Lundellii*.

Var. corruptum (Turn.) West & G. S. West. (Pl. LVII, figs. 5, 6.)

Cosmarium corruptum Turn. Freshw. Alg. E. India, 1893, p. 51, t. 8, f. 2.
C. subcircularare Turn. var. *rugosum* Turn. l. c. p. 52, t. 8, f. 7.
C. rotundum Turn. l. c. p. 58, t. 8, f. 48.

Cells smaller, sinus often somewhat open towards the exterior; cell-wall with variable scrobiculations of small size, generally larger and more distinct near the margin; apex of semicells slightly subtruncate.

Length 51-63 μ; breadth 48.5-61 μ; breadth of isthmus 23-28.5 μ.

England.—Bowness, Westmoreland!

Geogr. Distribution.—Galicia in Austria. India. Ceylon.

This variety only differs from typical *C. Lundellii* in its somewhat smaller size and in the greater distinctness of the scrobiculations near the margins of the semicells. The sinus is generally closed in its median part, although dilated at its extremity and opening considerably towards the exterior.

The plants named by Turner *Cosmarium corruptum*, *C. subcircularare* var. *rugosum*, and *C. rotundum*, are most certainly forms of one species, and we have thought it best to place them as a variety of *C. Lundellii* under the name “corruptum.”

C. Lundellii var. *corruptum* should be compared with *C. galeritum* Nordst., from which it can be distinguished by its wider and more depressed semicells, with less truncate apices, and by its much broader isthmus.

(Pl. LVII, fig. 7.)

Cells large, broadly elliptic, about 1 1/3 times as long as broad, deeply constricted, sinus narrowly linear with a dilated apex; semicells widely semi-elliptic, apices broad, basal angles broadly rounded, lower part of sides at first somewhat straight. Side view of semicell subcircular. Vertical view elliptic, ratio of axes about 1 : 1.5. Cell-wall thick and densely punctate. Chloroplasts axile, each with two pyrenoids.

Zygospore unknown.

Length 78–117 μ; breadth 60–87 μ; breadth of isthmus 30–40 μ; thickness 50–59 μ; thickness of cell-wall 2.5–3 μ.

ENGLAND.—Foot of Brant Fell, Westmoreland! Malham Tarn and Penyghent, W. Yorks! Pilmoor near Thirsk, N. Yorks! Mitcham Common and near Chapel Wood, Surrey! Millford Lake, Hants (Roy). Near Bovey Tracey, Devon (Bennett). Tremethick Moor, Cornwall!

SCOTLAND.—Sutherland, Ross, Aberdeen, Kincardine, Stirling, Argyll (in Mull) (Roy & Bissett).

IRELAND.—Lough Aunierin, Galway! Dublin and Wicklow (Archer). Clough, Antrim!

C. pachydermum is readily distinguished from C. Lundellii by its inflated semicells and its thick cell-wall. The vertical view is also more elliptic.

Var. æthiopicum nob. (Pl. LVII, figs. 8, 9.)

Cell-wall much thinner than in the type, finely scrobiculate and minutely punctate between the scrobiculations.

Length 69–107 μ; breadth 61–80 μ; breadth of isthmus 28–33 μ; thickness 40–44 μ.

Scotland.—Plankton of Loch Shin, Sutherland!

Geogr. Distribution.—W. Africa.

This variety was at first erroneously referred to C. Lundellii, but the form of the semicells both in the front and vertical view shows clearly that it is a thin-walled variety of C. pachydermum.

Careful examination of the cell-wall of this variety reveals a large number of minute punctulations scattered between the larger ones.

7. Cosmarium Ralfsii Bréb.

Didymidium (Cosmarium) Ralfsii Reinsch, Algenfl. Frank. 1867, p. 108.

Pleuroteniopsis (Cosmaridium) Ralfsii (Bréb.) De Toni, Syll. Alg. 1889, p. 911.

Cells large, subcircular, a little longer than broad, very deeply constricted, sinus narrowly linear with a dilated apex; semicells subpyramidate-semicircular, basal angles rounded, sides slightly convex, apex broadly rounded or truncate. Side view of semicell subcircular. Vertical view rhomboid-elliptic, ratio of axes about 1 : 1.9. Cell-wall finely punctate or even scrobiculate, sometimes almost smooth. Chloroplasts parietal, consisting of several irregular bands.
running from base to apex of each semicell, each band with several rather small pyrenoids.

Zygospore unknown.

Length 112–120 μ; breadth 95–104 μ; breadth of isthmus 21–25 μ; thickness 50 μ.

Wales.—General in Carnarvonshire (up to 2,700 ft. on Glyder Fawr)! Dolgelly and Ffestiniog, Merioneth! Llyn Coron, Anglesey!

Scotland.—Sutherland!, Ross, Inverness!, Aberdeen, Kincardine, Forfar, Perth!, Argyll, Arran (Roy & Bissett). Outer Hebrides! Orkneys!

Ireland.—Widely distributed in Donegal, Galway, and Kerry! Mayo! Dublin and Wicklow (Archer).

This characteristic species is widely distributed in the upland districts of the British Islands, and often occurs in abundance among submerged Sphagnum. It is frequently associated with Cosmarium Cucurbita, Euastrum insigne, Micerasterias oscitans var. mucronata, M. truncata, Gymnozyga moniliformis, Tetmemorus granulatus, and Netrium Digitus.

It is characterized by its pyramidate-semicircular semicells with a rounded apex, by its deep constriction, and by the parietal chloroplasts. The cell-wall is generally finely punctate, but may be delicately scrobiculate, and old individuals often become quite asperulate on the exterior.

Wolle gives a minimum length of 70 μ and a minimum breadth of 60 μ for his American specimens, but we have not seen any British forms so small as this.

Var. montanum Racib. (Pl. LVIII, fig. 3.)

Cosmarium Ralfsii var. montanum Racib. NONN. Desm. Polon. 1885, p. 70, t. 10, f. 4; West, Alg. W. Ireland, 1892, p. 163.

Pleurotzanthopsis Ralfsii var. montana (Racib.) De Toni, Syll. Alg. 1889, p. 911.

Cells with the sinus opening outwards, basal angles of semicells less rounded and slightly produced.
Length 87–128 μ; breadth 76–101 μ; breadth of isthmus 20–23 μ.

IRELAND.—Carrantuohill, Kerry!

Geogr. Distribution.—Galicia in Austria. Poland.

(Pl. LVIII, figs. 4, 5.)

Ursinella perforata Kuntze, Revis. gen. plant. 1891, p. 925.

Cells of medium size, angular-subcircular, a little longer than broad, moderately constricted, sinus somewhat open, widening outwards from an acute apex; semicells subpyramidate-semicircular, basal angles rounded-truncate, sides almost straight for a short distance, then converging to the subtruncate or sub-retuse apex. Side view of semicell subcircular, broad at the base and slightly retuse at the apex. Vertical view elliptic with pointed poles, ratio of axes about 1 : 1.56. Cell-wall rather thick, punctate, with a sub-triangular area in the centre of the semicells near the isthmus furnished with about 20 small scrobiculations. Chloroplasts axile, each with two pyrenoids.

Zygospore unknown.

Length 60–75 μ; breadth 57–63 μ; breadth of isthmus 26–36 μ; thickness 38–40 μ.

ENGLAND.—Bowness, Westmoreland!

SCOTLAND.—Loch Ruthven, Inverness; Dalbagie and Loch Ullachie near Ballater, near Castleton, and Birsemore, Aberdeen (Roy & Bisset). Dumfries!

IRELAND.—Loughs Akibbon, Gartan, and Sproule, Donegal! Ballynahinch, Lough Derryclare, Lakes E. of Lough Bofin, and small lakes Clifden to Roundstone, Galway!

The species is well characterized by the outward form of the semicells, the open sinus and broad isthmus, as well as by the large, scattered scrobiculations in the centre of the semicells.

9. **Cosmarium ocellatum** Eichler & Gutw.

(Pl. LVIII, fig. 6.)

Cells small, $1\frac{1}{6}-1\frac{1}{4}$ times as long as broad, deeply constricted, sinus linear and dilated towards the apex; semicells subsemicircular-pyramidate, basal angles and apex rounded. Side view of semicell subcircular. Vertical view elliptic, ratio of axes about 1:2.25. Cell-wall smooth or very finely punctate, with a large scrobiculation in the centre of the semicells. Chloroplasts axile, each with one pyrenoid.

Zygospore unknown.

Length 20–30 μ; breadth 17–23 μ; breadth of isthmus 4–6 μ; thickness 9–14 μ.

Geogr. Distribution.—Galicia in Austria.

The typical form of this species has not yet been observed in the British Islands.

Var. incrassatum West & G. S. West. *(Pl. LVIII, fig. 7.)*

A variety with the sinus always open; semicells with subtruncate apices. Cell-wall in the centre of the semicells with a thickened area of a yellowish colour, containing a small central scrobiculation surrounded by 2–5 smaller ones. Vertical view elliptic, with a slight, flattened protuberance at the middle on each side.
Length 28–30 μ; breadth 24–26 μ; breadth of isthmus 5·5–6·5 μ; thickness 14·5–15 μ.

ENGLAND.—Thursley Common, Surrey! New Forest, Hants!

This variety was abundant among *Utricularia minor* in both the above-mentioned localities.

10. **Cosmarium cyclicum** Lund.

(Pl. LVIII, figs. 8, 9.)

Ursinella cyclica Kuntze, Revis. gen. plant. 1891, p. 924.

Cells of medium size, circular or transversely circular-elliptic, about as long as broad, deeply constricted, sinus very narrow with a dilated apex; semicells semicircular, angles slightly rounded or obliquely truncate, margin regularly crenate with about 12 crenae, and with two or three parallel rows of small undulations within the margin. Side view of semicell obtuse, apex rounded-truncate. Vertical view narrowly fusiform-elliptic, undulate towards the poles, ratio of axes about 1:2·2. Cell-wall smooth. Chloroplasts axile, each with two pyrenoids.

Zygospore unknown.

Length 49–52 μ; breadth 52–58 μ; breadth of isthmus 17–27·5 μ; thickness 25–26 μ.

ENGLAND.—Borrowdale, Cumberland! Near Bowness (*Bissett*), and Helvellyn!, Westmoreland! Mickle Fell, N. Yorks!

WALES.—Capel Curig (*Cooke & Wills*), Snowdon!, Llyn Idwal!, Y Foel Fras!, and Llyn-an-afon!, Carnarvonshire.

IRELAND.—Dublin and Wicklow (*Archer*).

Geogr. Distribution.—France. Germany. Austria **Vol. II.**

C. cyclicum Lund. differs from *C. undulatum* Corda in its more depressed semicells with less rounded basal angles, and in the possession of two pyrenoids in each chloroplast.

Var. arcticum Nordst. (Pl. LVIII, fig. 10.)

Cells subcircular, inclined to be somewhat sexangular; semicells with the crenæ of the margin and within the margin bigranulate (as if emarginate), those towards the base unigranulate, apex 4-crenate and without granules.

Length 57.5–75 μ; breadth 65–75 μ; breadth of isthmus 22–28 μ; thickness 33–37 μ.

Scot. —Aberdeen, Kincardine, Forfar, and Renfrew (Roy & Bissett).

The figure of this variety given by Roy and Bissett is not like that of Nordstedt’s, but it suggests var. arcticum in the minute binate granules. We give a copy of Roy & Bissett’s figure (Pl. LVIII, fig. 11), and we think it stands near to var. Nordstedtianum, as the granules are not evident at the margin.

The form described by Schmidle as “var. maculatum” is intermediate in character between the figure given by Nordstedt and that given by Roy & Bissett.

Var. Nordstedtianum (Reinsch) nob. (Pl. LVIII, fig. 12.)

Cells distinctly hexagonal, usually a little broader than long; apices truncate or subtruncate, less crenate than the lateral margins.

Length 48–50 μ; breadth 54–66 μ; breadth of isthmus 19–21 μ; thickness 20–23 μ.

England.—Borrowdale, Cumberland! Penyghent, W. Yorks! Mickle Fell, N. Yorks! Wimbledon Common, Surrey.

Ireland.—Fintown, Donegal!

Geogr. Distribution.—Galicia in Austria. N. Russia.

We have observed this variety in greater abundance than typical *C. cyclicum*. It is well characterized by its hexagonal cells with truncate apices.

11. **Cosmarium fontigenum** Nordst.
(Pl. LIX, figs. 16, 17.)

Ursinella fontigena Kuntze, Revis. gen. plant. 1891, p. 924.

Cells small, about as long as broad, deeply constricted, sinus very narrow with a slightly dilated extremity; semicells broadly subpyramidate, apex broadly truncate, basal angles rounded, sides slightly convex or almost straight, upper part of lateral margins slightly crenate. Side view of semicell subcircular. Vertical view narrowly elliptic, with a small protuberance at the middle on each side. Cell-wall finely punctate. Chloroplasts axile, each with one pyrenoid.

Zygospore unknown.

Length 20–26 μ; breadth 20–25 μ; breadth of isthmus 6–8 μ; thickness 11–13 μ; breadth of apices about 8–11 μ.

England.—Puttenham Common, Surrey!

Scotland.—Ross; Skye and near Brin, Inverness; Aberdeen; Kincardine; Perth (Roy & Bissett).
IRELAND.—Dublin and Wicklow (Archer).
Sweden. Bornholm.

Gutwinski has described a Desmid from Galicia which he named *C. pseudofontigenum* (vide Gutw. 'Wahr. d. Priorität,' 1890, p. 67; 'Flor. Glon. Okolic Lwowa,' 1891, p. 40, t. i, f. 11), but we do not see how it can be specifically separated from *C. fontigenum* Nordst. as it only differs in the reduction of the small central protuberance. In dimensions and in all other characters it agrees well with *C. fontigenum* and therefore it can only be considered as a form of it.

12. *Cosmarium undulatum* Corda.

(Pl. LIX, figs. 1–3, 5.)

Didymidium (Cosmarium) undulatum Reinsch, Algenfl. Frank. 1867, p. 117 (in part).

Euastrum (Cosmarium) undulatum Gay, Monogr. loc. Conj. 1884, p. 60.

Cells rather small, quadrate-elliptic, about $\frac{1}{3}-1\frac{1}{2}$ times as long as broad, deeply constricted, sinus narrow with a dilated extremity; semicells widening upwards near the base, then subsemicircular, margins with 10 to 12 equal undulations. Side view of semicell subcircular. Vertical view elliptic, ratio of axes $1 : 1.33$. Cell-wall smooth. Chloroplasts axile, each with one pyrenoid.

Zygospore unknown.

Length $54-64 \mu$; breadth $39-52 \mu$; breadth of isthmus $12.5-17 \mu$; thickness $27.5-30 \mu$.

Wales.—Bethesda!, Glyder Fawr and Pen-y-gwryd (Roy), Capel Curig! (Cooke & Wills), Carnarvonshire. Dolgelly, Merioneth (Ralfs). Llyn Coron, Anglesey!

Scotland.—Ross, Inverness!, Banff, Aberdeen, Kincardine, Forfar, Perth!, Argyll (Roy & Bissett).

Ireland.—Mayo! Galway! Kerry! Dublin and Wicklow (Archer).

This species is widely distributed but by no means common. We figure a small form of it (Pl. LIX, fig. 4) which might almost stand as "forma minor"; length 34 μ; breadth 27.5 μ; breadth of isthmus 11 μ. Gutwinski has described a "forma minima" from Galicia with the following dimensions:—length 17–22 μ; breadth 16–17 μ: breadth of isthmus 5 μ.

Var. minutum Wittr. (Pl. LIX, figs. 6, 7.)

C. alpinum (Racib.) De Toni, Syll. Alg. 1889, p. 942; Schmidle in Hedwigia, 1894, p. 89.

Ursinella alpina Kuntze, Revis. gen. plant. 1891, p. 924.

Cells smaller, about 1⁴/₆ times longer than broad; semicells subsemicircular, basal angles rounded, margin undulate, with 12–14 undulations.

Length 21–28 μ; breadth 18–21 μ; breadth of isthmus 8.5–10 μ; thickness 12–13 μ.

England.—Strensall Common, N. Yorks! (Turner). Leicestershire (Roy).

Scotland.—"Not so common as the type" (Roy & Bissett).

C. crenatum Ralfs var. alpinum Racib. is unquestionably the same Desmid as C. undulatum Corda var. minutum Wittr., and should without doubt be regarded as a variety of C. undulatum. It differs from the typical form of that species in the shape of the semicells and in the more numerous undulations.

Var. crenulatum (Näg.) Wittr. (Pl. LIX, figs. 11, 12.)

? Euasterum crenulatum Ehrenb. 1839.
E. (Cosmarium) crenulatum Näg. Gatt. einz. Alg. 1849, p. 120, t. 7a, f. 7.

Cells smaller, about 1½ times longer than broad; semicells quadrate-semicircular, with about 8 undulations including the basal angles.

Length 29–30 µ; breadth 22·5–23 µ; breadth of isthmus 7–8·5 µ; thickness 13 µ.

Scotland.—Craig-an-Lochan, Perth!

This variety is distinguished from other forms of C. undulatum by the fewer number of undulations on each semicell. In general aspect it closely resembles C. impressulum Elfv., a species with which it should be carefully compared.

C. Meneghinii Bréb. forma tricrenata Turn. (‘Freshw. Alg. E. India,’ 1893, p. 71, t. 8, f. 25) is stated by the author to be identical with Euasterum crenulatum Näg., but his figure is much nearer a form of C. impressulum Elfv.

Var. Wollei West. (Pl. LIX, figs. 8–10.)

Cells smaller, broadly elliptic, about $1\frac{1}{4}$ times as long as broad; semicells subsemicircular, with 13 or 14 crenations in the margin.

Zygospore globose, furnished with long spines (or processes) with tridentate apices.

Length 32-43 μ; breadth 27-36 μ; breadth of isthmus 10-13·5 μ; diam. zygosp. without spines 34 μ, with spines 44-45 μ.

ENGLAND.—Near Bristol, Gloucestershire (Ralfs).

IRELAND.—Near Oughterard, Galway!

Geogr. Distribution.—United States.

This variety is distinguished from all the other forms of *C. undulatum* by the crenation of the margin, which is of precisely the same nature as that of *Cosmarium speciosum* Lund. The semicells are not inclined to be subquadrate as in var. *minutum* and var. *crenulatum*.

The zygospore of *C. undulatum* figured by Ralfs in his 'British Desmids,' t. 15, f. 8, most certainly belongs to this variety. The empty semicells which he figures round the zygospore are crenate.

(Pl. LIX, figs. 13–15.)

Ursinella subundulata Kuntze, Revis. gen. plant. 1891, p. 925.

C. undulatum Corda var. *subundulatum* Börg. F reshw. Alg. Östgrønl. 1894, p. 17, t. 1, f. 8; Schmidle, Alg. aus Sumatra, 1895, p. 303, t. 4, f. 9.

Cells of moderate size, $1\frac{1}{2}$ times longer than broad, elliptic, deeply constricted, sinus very narrow, dilated at the apex; semicells semi-elliptic, basal angles rounded, apex commonly a little flattened, margins with about 12 undulations, and with two series of undulations within the margin corresponding to the peripheral ones. Side view of semicell ovate, apex
5-undulate. Vertical view elliptic, ratio of axes about 1 : 1.5, with a broad tumour at the middle on each side, poles 5-undulate. Cell-wall very delicately punctate, and often furnished with a few minute scrobiculations more or less regularly disposed near the margin of the semicells. Chloroplasts axile, each with two pyrenoids.

Zygospore unknown.

Length 45–60 μ; breadth 32–39 μ; breadth of isthmus 15–16 μ; thickness 23–27 μ.

ENGLAND.—Angle Tarn, Cumberland! Blea Tarn, Westmoreland! Pilmoor, N. Yorks!

WALES.—Llyn Idwal, Llyn-y-cwm-ffynon, and Capel Curig, Carnarvonshire!

SCOTLAND.—Near Strathpeffer, Ross; Brin, Inverness; Upper Powlair and Slewdrum, Aberdeen; near Kingshouse, Argyll (Roy & Bissett). Rhiconich, Sutherland!

IRELAND.—Near Foxford, Mayo! Ballynahinch, Lough Athry, Clifden, and near Oughterard, Galway! Adrigole and Castletown, Kerry!

This species differs from C. undulatum in its proportionately longer cells, in the semi-elliptic shape of the semicells, and in the presence of the large protuberance in the centre of the semicells. There are usually a few minute scrobiculations near the margin of the semicells, more or less regularly arranged, but rather variable in different individuals and somewhat difficult of observation.

(Pl. LIX, figs. 18–20.)
Cosmarium.

Didymidium (Cosmarium) Cucumis Reinsch, Algenfl. Frank. 1867, p. 108.
Cosmaridium Cucumis Gay, Monogr. loc. Conj. 1884, p. 78, t. 2, f. 19;

Cells large, $1 \frac{1}{2} - 1 \frac{3}{4}$ times as long as broad, deeply constricted, sinus narrowly linear with a slightly dilated extremity; semicells semi-elliptic or widely truncate-ovate from a broad base, both inferior and superior angles rounded, apex rounded or sometimes slightly truncate. Side view of semicell obtusely ovate. Vertical view broadly elliptic or elliptic-oblong, ratio of axes about $1:1.3$. Cell-wall smooth. Chloroplasts 6 or 8 in each semicell, forming parietal, irregular bands extending from base to apex, and each containing several pyrenoids.

Zygospore unknown.

Length 62–102 µ; breadth 34–56 µ; breadth of isthmus 20–38 µ; thickness 27–38 µ.

Wales.—Snowdon!, Capel Curig! (Cooke & Wills), Llyn Idwal!, Llyn Ogwen!, Bethesda!, Llyn-an-afon!, Moelfre!, and Yr Orsedd!, Carnarvonshire.

Scotland.—General! (Roy & Bissett). Outer Hebrides! Orkneys! Shetlands!

Ireland.—Donegal! Galway! Kerry! Dublin and Wicklow! (Archer). Down!

C. Cucumis is somewhat variable both in size and in its
relative proportions. In the typical form the apices of the semicells are very slightly (almost inappreciably) flattened and the sinus is fairly deep.

The chloroplasts are very characteristic. They are parietal bands similar to those present in *C. Ralfsii*, but are broader with more serrated edges. The number of bands in each semicell is not constant, and each band possesses several small ellipsoidal pyrenoids.

In the 'Alg. of W. Ireland' p. 163, the zygospores of *C. Cucumis* were described as "globose and smooth," but we are now uncertain as to the identity of the species in question. It may have been *C. Subcucumis* or some other allied form, as the measurements (length 54–57 μ; breadth 30–31 μ) are not those of typical *C. Cucumis*.

Var. helveticum Nordst.

C. Cucumis var. *helveticum* Nordst. in Wittr. & Nordst. Alg. Exsic. 1880, No. 378; and in fasc. 21, 1889, p. 43; Roy & Biss. Scott. Desm. 1894, p. 44.

Cells smaller, semicells more rapidly attenuated towards the apex; cell-wall densely and minutely scrobiculate.

Length 48–56 μ; breadth 26–36 μ; breadth of isthmus 10–12 μ; thickness 22–26 μ.

England.—Delamere, Cheshire (*Roy*). Leicestershire (*Roy*).

Wales.—Glyder Fawr and Pen-y-gwryd, Carnarvonshire (*Roy*).

Scotland.—Inverness, Aberdeen, Kincardine (*Roy & Bissett*).

Geogr. Distribution.—Switzerland.

We have not seen this variety. Nordstedt states that it strongly resembles *C. subquadratum* Nordst. and *C. variolatum* Lund.

Var. magnum Racib. (Pl. LIX, figs. 21, 22.)

A large variety, almost twice as long as broad, and less deeply constricted than the type; semicells with truncate or subtruncate apices; cell-wall densely punctate, often thick.

Length 98–107 μ; breadth 53–66 μ; breadth of isthmus 33–43 μ; thickness 38.5–46 μ.

England.—Helvellyn, Westmoreland!

Scotland.—“Pretty common” (Roy & Bissett). Skye, Inverness! W. of Kirkwall, Orkneys!

15. *Cosmarium Subcucumis* Schmidle.

(Pl. LX, figs. 1–3.)

Cells large, broadly elliptic, about 1\(\frac{3}{2}\) to 1\(\frac{3}{4}\) times as long as broad, deeply constricted, sinus linear and dilated towards the extremities (sometimes slightly open); semicells semi-elliptic, basal angles rounded, apex convex or somewhat flattened. Side view of semicell broadly elliptic. Vertical view elliptic, ratio of axes about 1 : 1.5. Cell-wall smooth. Chloroplasts axile, each with two pyrenoids.

Zygospore unknown.

Length 54–78 μ; breadth 36–45 μ; breadth of isthmus 15–19 μ; thickness 23–26 μ.

England.—Ogden Clough, Ilkley, and Cautley Spout, W. Yorks! Esher West-end and Wimbledon Commons, Surrey!

Geogr. Distribution.—Germany. Galicia in Austria.

The British specimens are not precisely like those originally described by Schmidle from Germany. The cells are relatively longer and the sinus is generally slightly open. The relative proportion of breadth to length in the British specimens is 1 : 1.79; that in the German specimens is 1 : 1.42.

The species differs from *C. Cucumis* in its axile chloroplasts, each of which contains two rather large pyrenoids.
We give a figure of a rather peculiar specimen (Pl. LX, fig. 4) in which the chloroplasts were neither axile nor parietal, but in an intermediate condition. In the shorter semicell the chloroplasts suggest a parietal disposition, whereas in the longer semicell there is an axile disposition. The external features of this specimen are also more in agreement with those of C. Cucumis.

16. Cosmarium microsphinctum Nordst. (Pl. LX, figs. 5–8.)

Ursinella microsphincta Kuntze, Revis. gen. plant, 1891, p. 925.

Dysphinctium microsphinctum (Nordst.) Schmidd, Alg. Sumatra, 1895, p. 302.

Cells small, elliptic, about 1½ times longer than broad, moderately constricted, sinus uniformly narrow and linear; semicells semi-elliptic, sides convex, gradually converging from an almost straight base to a rounded apex, basal angles subrectangular. Side view of semicell ovate. Vertical view rhomboid-elliptic, poles very slightly produced, ratio of axes about 1:1:38. Cell-wall very finely punctate. Chloroplasts axile, each with one pyrenoid.

Zygospore globose, furnished with processes arising from broad bases; apices of processes bifurcate or trifurcate.

Length 36–39·5 μ; breadth 25–27 μ; breadth of isthmus 14·5–18 μ; thickness 18–20 μ; diam. zygosp. without spines 20 μ, with spines 54 μ.

ENGLAND.—Heseltine Ghyll, Penyghent, and near Ilkley, W. Yorks! Mickle Fell, N. Yorks!

SCOTLAND.—Ardtannes near Inverurie, Craigendinnie near Aboyne, and Presswhin in Cromar, Aberdeen (Roy & Bissett).

This is a characteristic species which occurs amongst mosses on wet rocks in mountainous or alpine areas. In the British Islands it appears to be very rare.

It is distinguished from *C. pseudopyramidatum* Lund. and *C. variolatum* Lund. by its much shallower constriction, its rounded apices, its more densely punctate cell-wall, and by the tumour at each side of the vertical view.

Forma parvula Wille. (Pl. LX, fig. 9.)

Cells a little smaller and proportionately a little longer; semicells more attenuated to a narrower apex.

Length 33 μ; breadth 20 μ; breadth of isthmus 7 μ; thickness 15 μ.

Scottland.—Kemback near St. Andrews, Fife (Roy & Bissett).

Geogr. Distribution.—Nova Zembla.

Var. majus Roy & Biss. (Pl. LX, fig. 10.)

About twice the size of the ordinary form.

Length 80 μ; breadth 52 μ; breadth of isthmus 35 μ.

Scottland.—Presswhin in Cromar, Aberdeen (Roy & Bissett).

17. **Cosmarium morsum** West.

(Pl. LX, fig. 11.)

Cells rather small, almost twice as long as broad, slightly constricted, sinus widely open and semicircular; semicells semi-elliptic, basal angles rectangular. Side view of semicell subcircular, with the sides somewhat compressed. Vertical view very broadly elliptic, ratio of axes about 1 : 1.2. Cell-wall smooth.

Zygospore unknown.
Length 40.5 µ; breadth 23.2 µ; breadth of isthmus 15.5 µ; thickness 20.2 µ.

England.—Near Bowness, Westmoreland!

This species is characterized by the curious excavated sinus and by its relatively great thickness. We have seen no living specimens of it.

18. **Cosmarium Phaseolus** Bréb.

(Pl. LX, figs. 12–14.)

Heterocarpella Phaseolus Bréb. in Cheval. microscop. et usage, 1839, p. 272.

Ursinella Phaseolus Kuntze, Revis. gen. plant. 1891, p. 925.

Cells small, as long as broad, deeply constricted, sinus narrow with a dilated extremity; semicells rather narrowly reniform. Side view of semicell subcircular, with a slight protuberance at the middle on each side. Vertical view narrowly elliptic, ratio of axes about 1 : 2, with a small protuberance at the middle on each side. Cell-wall minutely punctate. Chloroplasts axile, with one pyrenoid.

Zygospore globose, densely aculeate, aculei arising from broad bases.

Length 29–35 µ; breadth 26–36 µ; breadth of isthmus 9–11 µ; thickness 19–22 µ; diam. zygosp. without spines 33 µ, with spines 47 µ.

England.—Westmoreland (*Bissett*). W., N., and E. Yorks! Middlesex! Surrey! Devon! Cornwall! (*Ralfs*).

Wales.—Capel Curig! (*Cooke & Wills*), Llyn Ogwen!
COSMARUM.

and Yr Orsedd!, Carnarvonshire. Dolgelly, Merioneth (Ralfs).

Scotland.—Ross, Inverness!, Aberdeen, Kincardine, Forfar!, Perth!, Argyll, Arran, Fife (Roy & Bissett). Sutherland! Kirkcudbright!

Ireland.—Donegal! Galway! Kerry! Dublin and Wicklow (Archer).

C. Phaseolus should be carefully compared with C. depressum (Näg.) Lund., C. subtumidum Nordst., and varieties of these species. Apart from differences in the form of its semicells, it can be distinguished at once by the small but prominent protuberance on each side of the vertical view.

Wolle observed the zygospore from the United States.

It is a widely distributed species, but in the British Islands it is distinctly rare.

Forma minor Boldt. (Pl. LX, fig. 15.)

Cells smaller than in the typical form.

Length 20·4—21 μ; breadth 18 μ; breadth of isthmus 5·5—6 μ; thickness 11·5—14·4 μ.

England.—Grimspound, Devonshire!

Var. elevatum Nordst. (Pl. LX, figs. 16, 17.)

Semicells generally hexagonal-elliptic, apex truncate-convex.
Length 26·4–28·8 μ; breadth 25·2–30 μ; breadth of isthmus 7–10 μ; thickness 14·4–17 μ.

ScOTLAND.—Near Ballater, Aberdeen; Glen Dye, Kincardine; Rannoch, Perth (Roy & Bissett).

Ireland.—Lough Machugh, Donegal (abundant)!

This variety very closely resembles *C. subtumidum* Nordst. var. Klebsii (Gutw.) W. & G. S. West, especially in the front view, but it can be recognized by the protuberance on each side of the vertical view.

(Pl. LX, fig. 18.)

Ursinella tumida Kuntze, Revis. gen. plant. 1891, p. 926.

Cells rather small, a little longer than broad, deeply constricted, sinus narrow, widening outwards; semicells subsemicircular-elliptic, apices broadly convex. Side view of semicell circular. Vertical view elliptic-rhomboid, widely tumid at the middle on each side, ratio of axes about 1:1·35. Cell-wall finely punctate, punctulations larger in the centre of the semicells. Chloroplasts axile, each with one pyrenoid.

Zygospore unknown.

Length 33–37 μ; breadth 27–32 μ; breadth of isthmus 8–9·5 μ; thickness 23 μ.

Wales.—Capel Curig, Carnarvonshire!

Scotland.—Slewdrum, Upper Powlair, Aboyne, Castleton, and Glen Clunie, Aberdeen; near Menmuir, Forfar; Folotry, Perth (Roy & Bissett).

Ireland.—Near Oughterard, Galway!

Geogr. Distribution.—France. Germany (form).

This rare species stands near to *C. Phaseolus* Bréb., but is distinguished by its proportionately greater length compared with its breadth, by the straighter and less reniform base of the semicells, and by the broadly tumid (ventricose) sides of the vertical view. Lundell also states that the chloroplasts are like those of *C. moniliforme* (Turp.) Ralfs, consisting of a number of lobes radiating from a central pyrenoid.

Forma subrectangularis f. *nov.* (Pl. LX, fig. 19.)

Semicells distinctly subrectangular with rounded angles.
Length 32·5 μ; breadth 27·5 μ; breadth of isthmus 11·2 μ; thickness 22 μ.

IRELAND.—Ballynahinch, Galway!

This form is characterized by the shape of its semicells as seen in the front view. The punctuations on the cell-wall are larger in the centre of the semicells as in the typical form.

20. **Cosmarium Trafalgaricum** Wittr.
(Pl. LX, fig. 20.)

Cells small, about $1\frac{1}{3}$ times longer than broad, deeply constricted, sinus linear, widening outwards; semicells subreniform with a rather flattened base, middle of apex emarginate. Side view of semicell spherical, with a small protuberance on each side. Vertical view elliptic, with a protuberance at the middle on each side, ratio of axes (without protuberances) about 1 : 2. Cell-wall smooth.

Zygospore unknown.
Length 24–26 μ; breadth 20–21 μ; breadth of isthmus 6–7 μ; thickness 13–14 μ.

ENGLAND.—In the fountains, Trafalgar Square, London (*Wittrock;* 1872).
We have not seen this species, nor has it been observed since its original discovery by Wittrock. It seems to be well characterized by its emarginate apices and its small central protuberance. Its nearest ally is perhaps *C. Phaseolus* Bréb.

21. *Cosmarium melanosporum* Arch.

(Pl. LX, figs. 21-23.)

Cells small, as long as broad, or sometimes a little longer than broad, deeply constricted, sinus narrow, widening outwards; semicells transversely oblong, basal angles well rounded, upper angles more rounded, apex broadly convex. Side view of semicell circular. Vertical view elliptic, ratio of axes about 1:1.7. Cell-wall smooth.

Zygospore globose and smooth, the wall of a very dark brown colour, becoming black.

Length 15-19 μ; breadth 15-19 μ; breadth of isthmus 5-6.7 μ; thickness 7-9.6 μ; diam. zygosp. 23-25.5 μ.

ENGLAND.—Leicestershire (Roy).

WALES.—Bettws-y-coed, Capel Curig, Glyder Fawr, and Pen-y-gwryd, Carnarvonshire (Roy).

SCOTLAND.—Generally distributed (Roy & Bissett). Outer Hebrides!

IRELAND.—Dublin and Wicklow (Archer). Lough Derryadd, Armagh!

Roy states that this species conjugates abundantly in Scotland, and may be readily recognized by the smooth, globular, very dark zygospore. We have only seen the zygospores from the Outer Hebrides and from Ireland.

C. melanosporum stands very near to *C. tenue* Arch., but is distinguished by its more inflated semicells and by the dark colour of the zygospore. The constriction is not so deep in *C. melanosporum* as it is in *C. tenue*, and the vertical view is more broadly elliptic.
22. *Cosmarium asphærosorum* Nordst.

(Pl. LX, figs. 24, 25.)

Ursinella asphærosora Kuntze, Revis. gen. plant. 1891, p. 924.

Cells small, about as long or not quite as long as broad, moderately constricted, sinus widely open, sub-rectangular with an obtuse apex; semicells broadly cuneate, with a widely-truncate apex and rounded angles. Side view of semicell obovate-subcircular from a broad base. Vertical view subrhomboïd-elliptic, with a scarcely-evident, depressed wart at the middle on each side, ratio of axes about 1 : 1.27. Cell-wall smooth and colourless.

Zygospore smooth, subrectangular-oblong, sometimes elliptic or somewhat irregular, angles rounded, longer sides convex in the middle, shorter sides retuse; side view elliptic; end view circular; cell-wall lead-coloured.

Length 10–13 μ; breadth 12–13 μ; breadth of isthmus 7–8 μ; thickness 9–10 μ; length of zygospore 21–22 μ; breadth of zygospore 14–18 μ.

England.—Penyghent, W. Yorks!

Scotland.—Inverness, Aberdeen, Kincardine, Forfar, Perth, Stirling, Argyll; zygospores from Dinnet, Aberdeen, and Kerloch, Kincardine (*Roy & Bissett*).

This species is distinguished from *C. bioculatum* Bréb. and *C. tenue* Arch. by its much shallower constriction and widely-open sinus, by the subtruncate apices, by the form of the vertical view, and by the characteristic shape of the zygospore. It differs from *C. inconspicuum* West & G. S. West in its relatively greater breadth, its broader, subtruncate apices, its rhomboid vertical view, and its rectangular zygospore.
Var. strigosum Nordst. (Pl. LX, figs. 26, 27.)

Cells with a narrower isthmus and consequently with a deeper sinus, apices flatter; vertical view elliptic with no trace of median inflation.

Length 10–11 μ; breadth 8–10 μ; breadth of isthmus 3·5 μ; thickness 5 μ.

Geogr. Distribution.—Puttenham Common, Surrey!

This variety differs from *C. bioculatum* Bréb. in its smaller size, its more open sinus, and its broad, truncate apices. From *C. bioculatum* var. *hians* it is distinguished by its smaller size, its straighter apices, its less-rounded lateral angles, and its smooth cell-wall.

(Pl. LXI, figs. 1, 2.)

Cells minute, about 1½ times longer than broad, moderately constricted, sinus open, subrectangular, with a rounded apex; semicells transversely ellipitic, apices broadly convex, almost subtruncate. Side view of semicell subcircular. Vertical view elliptic, ratio of axes about 1:1·7. Cell-wall smooth and colourless. Chloroplasts axile, each with one pyrenoid.

Zygospore ovoid, with a smooth and colourless wall.

Length 13·5–14·6 μ; breadth 9·5–12 μ; breadth of isthmus 4·8–6·5 μ; thickness 7–7·6 μ; diam. zygosp. 14·5–17 μ.

Geogr. Distribution.—Bog two miles S. of Clapham, W. Yorks! Mitcham Common, Surrey (with zygospores)! Treme-thick Moor, Cornwall!

Ireland.—Glendoan and Lough Gartan, Donegal!

This species is a near ally of *C. tenue* Arch., *C. tinctum* Ralfs, and *C. minutissimum* Arch., all of which have smooth
zygospores. It can be recognized from all these species by the form of its cells alone. Its open sinus, rounded at the apex, is characteristic, and the chloroplast is furnished with a number of distinct lobes.

24. Cosmarium bioculatum Bréb.

(Pl. LXI, figs. 3–7.)

Heterocarpella bioculata Bréb. Alg. Falaise, 1835, p. 56, t. 7 [in part only].
Didymidium (Cosmarium) bioculatum Reinsch. Algenfl. Frank. 1867, p. 107 [in part].
Cosmarium Phaseolus Bréb. b. bioculatum Klebs, Desm. Ostpreuss. 1879, p. 35.
Euastrium (Cosmarium) bioculatum Gay, Monogr. loc. Conj. 1884, p. 57.
Ursinella bioculata Kuntze, Revis. gen. plant. 1891, p. 924.

Cells minute, about as long as broad, deeply constricted, sinus narrow towards the apex and widening outwards; semicells transversely oblong-elliptic, both base and apex flattened, sides rounded. Side view of semicell subcircular. Vertical view oblong-elliptic, ratio of axes about 1 : 2. Cell-wall smooth and colourless. Chloroplasts axile with one pyrenoid.

Zygospore globose, furnished with conical, blunt spines, from 9 to 11 of which show in the periphery.

Length 15–21 μ; breadth 15–21 μ; breadth of isthmus 4:8–6:7 μ; thickness 6–9:5 μ; diam. zygosp. without spines 15–19 μ; with spines 22:5–28 μ.

Wales.—Fairly general in Carnarvonshire and Merioneth!

Scotland.—Sutherland !, Inverness, Aberdeen, Kincardine, Forfar !, Perth! (Roy & Bissett). At 3,500 ft. on Lochnagar, Aberdeen! Not uncommon in the plankton! Outer Hebrides! Orkneys! Shetlands!

Ireland.—Donegal! Mayo! Galway! Kerry! Dublin and Wicklow (Archer). Londonderry! Down! Armagh!

C. bioculatum is one of the most generally distributed of the small, smooth species of the genus. It is distinguished at once from all its allies by the spiny zygospore. The spines are stout, very blunt, and not very numerous, from nine to eleven being visible around the periphery of the spore.

The semicells are somewhat narrowly elliptic or elliptic-oblong, and the sinus is slightly open.

Forma depressa Schaarschm. (Pl. LXI, figs. 8, 9.)

Cells subquadrate, with rounded angles, sinus open; semicells transversely oblong with broadly flattened apices; vertical view oblong, sides parallel and poles rounded.

Length 14·5—20 μ; breadth 17—18 μ.

England.—Brother's Water, Westmoreland! Epping Forest, Essex! Keston Common, Kent!

Var. hians West & G. S. West. (Pl. LXI, figs. 10, 11.)

Cells with the sinus more open, somewhat conical with a subacute apex; lower margins of semicells convex, apices straight or very slightly retuse. Cell-wall distinctly but minutely punctate.

Length 17–19 μ; breadth 15–18 μ; breadth of isthmus 3.5–4.5 μ; thickness 7.5–8.5 μ.

England.—Puttenham and Thursley Commons, Surrey!

This variety comes nearest to *C. bioculatum* Bréb. var. *excaatum* Gutw., but is proportionately shorter, with a more acute sinus, and the apices of the cells are straight or slightly retuse. The cell-wall is also distinctly punctate.

25. Cosmarium tenue Arch.

(Plate LXI, figs. 12–15.)

Zygospore globose and smooth.

Length 14–16 μ; breadth 13.5–15.5 μ; breadth of isthmus 3.5–4.5 μ; thickness 8.5 μ; diam. zygosp. 22–23 μ.

Ireland.—Lough Derryclare, and lakes E. of Lough Bofin, Galway (with zygospores)! Dublin and Wicklow (*Archer*). Slieve Donard, Down!

C. tenue Arch. may very easily be confused with *C. bioculatum* Bréb., but the semicells are more elliptic and the zygospore is quite smooth.
The Desmid figured by Wolle (‘Desm. U.S.’ 1884, t. 15, f. 22) as *C. bioculatum* is most probably a form of *C. tenue* as it has a smooth zygospore. Johnson (‘Rare Desm. U.S.’ I, 1894, p. 288) also states that *C. tenue* is common almost everywhere in the United States, and is often found in quantity and usually with zygospores.

(Pl. LXI, figs. 16–18.)

Ursinella tincta Kuntze, Revis. gen. plant. 1891, p. 925.

Cells minute, a little longer than broad, moderately constricted, sinus narrow towards the apex but open outwards; semicells elliptic. Side view of semicell subcircular. Vertical view elliptic, ratio of axes about 1 : 1·8. Cell-wall smooth and of a reddish-brown colour. Chloroplasts axile, with one pyrenoid.

Zygospore subquadrate, with rounded angles and retuse sides; cell-wall smooth.

Length 10–15 μ; breadth 7·5–11·6 μ; breadth of isthmus 4·5–8·4 μ; thickness 5–9 μ; diam. zygosp. 11–15 μ.

WALES.—Fairly general in Carnarvonshire!

SCOTLAND.—General! Zygospores from Aberdeen and Kincardine (Roy & Bissett). Outer Hebrides! Shetlands!

IRELAND.—Donegal! Mayo! Galway (zygospores from near Roundstone)! Kerry! Dublin and Wicklow! (Archer). Armagh!

C. tinctum is distinguished from both *C. bioculatum* and *C. tenue* by its proportionately longer cells which are not so deeply constricted. The semicells are more broadly elliptic, the sinus is more open, and the cell-wall is generally of a pale yellow or yellow-brown colour. The subquadrate form of the zygospore is also characteristic of the species.

It is a widely-distributed species and can sometimes be obtained in quantity in collections from boggy districts.

The cell-wall is not invariably tinted, colourless individuals being occasionally met with. Wille has described a form from Norway (*vide* 'Norges Ferskv. Alg.', 1880, p. 36, t. 1, f. 22) in which the cell-wall is very delicately punctate, and Borge reports the occurrence of the same form in Greenland.

Nordstedt has described a trigonal form from New Zealand, in which the vertical view is triangular with rounded angles and slightly convex sides (*vide* 'Freshw. Alg. N. Zeal.', 1888, p. 61, t. 3, f. 16).

Var. *intermedium* Nordst. (Pl. LXI, figs. 19, 20.)

Semicells with the sinus not narrowed towards the apex; vertical view with a slight tumidity at the middle on each side; cell-wall often colourless.

Length 11–15 μ; breadth 10–12 μ; breadth of isthmus 6–8 μ; thickness 8–9 μ.

England.—Borrowdale, Cumberland!

This variety is intermediate in character between *C. tinctum* and *C. aspherosporum*.
27. Cosmarium flavum Roy & Biss.

(Pl. LXI, figs. 21, 22.)

Cells rather small, about as long as broad, deeply constricted, sinus narrow towards the apex but opening outwards; semicells elliptic-oblong with a somewhat flattened apex. Side view of semicell subglobose. Vertical view elliptic, ratio of axes about 1:1.7. Cell-wall smooth and of a yellow colour.

Zygospore globose and smooth.

Length 32 μ; breadth 32 μ; breadth of isthmus 10 μ; thickness 15•5 μ; diam. zygosp. 40 μ.

Scotland. — Loch Inver, Sutherland; Scotston, Birsemore, Craignendinnie, Dinnet, Dawin, Auchnerran, and Glen Clunie, Aberdeen; Crathes, Cammie, and Dalbrake, Kincardine (Roy & Bissett).

We have not seen this species, which Roy & Bissett record as “rare” in Scotland. It appears to be very closely related to Cosmarium contractum forma Jacobsenii and C. contractum var. ellipsoideum, from each of which it chiefly differs in the cells being more flattened at the apices and in the yellow tint of the cell-wall.

28. Cosmarium contractum Kirchn.

(Pl. LXI, figs. 23–25, 34.)

Ursinella contracta Kuntze, Revis. gen. plant. 1891, p. 924.

Cells rather small, about 11/2 times longer than broad, very deeply constricted, sinus narrow towards the apex, rapidly widening outwards; semicells sub-elliptic,
ventral margin always more convex than the dorsal margin. Side view of semicell circular. Vertical view elliptic, ratio of axes 1 : 1·57. Cell-wall colourless and finely punctate. Chloroplasts axile, with one central pyrenoid.

Zygospore globose or angular-globose, smooth.

Length 34·5—41 μ; breadth 25—31 μ; breadth of isthmus 7—8·7 μ; thickness 18—19 μ; diam. zygosp. 31·5—35 μ.

England.—Bowness, Westmoreland! Widdale Fell, W. Yorks! Pilmoor, N. Yorks! Puttenham Common, Surrey!

Wales.—Llyn Bodgynwydd, Capel Curig, and Llyn-y-cwm-ffynon, Carnarvonshire!

Scotland.—Near Alford, and south of Birsemore, Aberdeen; Buchanty, Perth (Roy & Bissett). Rhiconich, Sutherland! Not uncommon in the plankton of Sutherland, Inverness, Ayshire, and the Outer Hebrides!

Ireland.—Lough Gartan and near Lough Magrath, Donegal! Ballynahinch, Clifden, and Lough Aunierin, Galway! Cromagloun, Tore Mt., and Adrigole, Kerry! Lough Derryadd, Armagh!

C. contractum is a somewhat rare British species, although it sometimes occurs in abundance in the plankton. It is very deeply constricted, the isthmus forming a narrow neck, and the sinus is widely open. The semicells in the front view are subelliptic in form, the lower margin being more convex than the upper one.

The Desmid described and figured by Turner ('Freshw. Alg. E. India,' 1893, p. 48, t. 7, f. 38, t. 9, f. 21) as C. contractum var. punctatum does not belong to this species.

Forma Jacobsenii (Roy) nob. (Pl. LXI, f. 26.)

Cells almost $1\frac{1}{2}$ times as long as broad, sinus open but rounded at the apex; semicells more equally elliptic or oblong-elliptic.

Length 28–45 μ; breadth 18–27 μ; breadth of isthmus 4.5–7.5 μ.

England.—Near Bowness, Westmoreland (Bissett).

Scotland.—Slewdrum, Presswhin, Logie-Coldstone, and Glen Clunie, Aberdeen; Crathes, and Dalbrake in Strachan, Kincardine (Roy & Bissett).

Geogr. Distribution.—Germany. Galicia in Austria.

Norway.

Sweden.

Denmark.

Bornholm.

Central Africa.

This form is of the same relative length and breadth as typical *C. contractum*, but differs in the more regularly elliptic semicells. It is scarcely to be separated from it.

Var. ellipsoideum (Elfv.) West & G. S. West.

(Pl. LXI, figs. 28, 35.)

Cosmarium ellipsoideum Elfv. Anteck. Finska Desm. 1881, p. 13, t. 1; f. 10;

Ursinella ellipsoidea Kuntze, Revis. gen. plant. 1891, p. 924.

Cosmarium contractum Kirchn. var. ellipsoideum (Elfv.) West & G. S. West, Alg. N. Ireland, 1902, p. 40.

Cells shorter, not more than $1\frac{1}{4}$ times as long as broad, semicells more exactly elliptic, although the apex is sometimes slightly flattened in the middle. Cell-wall usually smooth.

Zygospore globose and smooth.

Length 31–51 μ; breadth 24–42 μ; breadth of isthmus 7–12 μ; thickness 14.5–27 μ; diam. zygosp. 29–36 μ.

England.—Thursley Common, Surrey!

Wales.—Capel Curig, Carnarvonshire!

Scotland.—Skye, and also plankton of Loch Bairness, Inverness! Plankton of Lochs Langabhat, an Tomain, and Stranabhat, Lewis, and of Lochs
Diracleet and a Mhorghain, Harris, Outer Hebrides! Plankton of Loch Beosetter, Bressay, Shetlands!

IRELAND.—Small lakes between Clifden and Roundstone, Galway!

We do not think that *C. ellipsoideum* Elfv. differs sufficiently from *C. contractum* Kirchn. to warrant its separation as a distinct species, and we have therefore placed it as a variety of that species. It differs from typical *C. contractum* in having relatively shorter cells, with a less widely-open sinus, and more exactly elliptical semicells. It is very variable in size, and there are three forms worthy of special mention:

(1) A form about half the normal size; length 22–23.5 μ; breadth 18–20 μ; breadth of isthmus 6.5–7.6 μ; thickness 11–12 μ. (Pl. LXI, figs. 30–32.) Not uncommon in the Scottish plankton. This form is probably identical with *C. minutum* Delp. (*Desm. subalp.* 1877, p. 105 (sep.), t. 7, f. 37–39), and perhaps would be better placed as *C. contractum* var. *minutum* (Delp.).

(2) A form of very variable size, with the sinus more closed (= *C. ellipsoideum* Elfv. var. *minor* Racib. *Nomn. Desm. Polon.* 1885, p. 84, t. 10, f. 9; *C. proteiforme* Turn. *Freshw. Alg. E. India*, 1893, p. 64, t. 9, f. 26); length 16–42 μ; breadth 11–29 μ; breadth of isthmus 4–8 μ; thickness 8–16 μ. (Pl. LXI, fig. 33). This form we have observed from Thursley Common, Surrey.

(3) A form in which the cells are slightly retuse in the middle of each apex; cell-wall delicately punctate; length 32 μ; breadth 27.5 μ; breadth of isthmus 5.5 μ (Pl. LXI, fig. 29). This form we described and figured in *‘Alg. N. Ireland,’* 1902, p. 40, t. 2, f. 10. It might stand as "var. *ellipsoideum* forma *retusa."") It was found at Glenties and in Lough Anna, Donegal.

Var. Gartanense West & G. S. West. (Pl. LXI, fig. 27.)

Cells larger and usually a little longer; semicells at the middle of the apex abruptly retuse-emarginate.

Length 68 μ; breadth 43–44 μ; breadth of isthmus 10 μ.

IRELAND.—Lough Gartan, Donegal!
Var. Cracoviense Racib.

Semicells obtapezoid, sides divergent and almost straight, basal and upper angles rounded, apex slightly convex.

Length 31-34 μ; breadth 22-26 μ; breadth of isthmus 8-9 μ; thickness 16·5-19 μ.

Scotland.—Dinnet, Aberdeen (Roy & Bisset).

(Pl. LXI, figs. 36, 37.)

Cells small, a little longer than broad, very deeply constricted, sinus narrow near the apex but widely open outwards; semicells obversely semicircular, with a broad and almost straight apex, upper lateral angles rounded; side view of semicell circular. Vertical view elliptic, ratio of axes about 1:1·7. Cell-wall minutely punctate. Chloroplasts axile with one central pyrenoid.

Zygospore unknown.

Length 32·5-34 μ; breadth 30-31·5 μ; breadth of isthmus 7-8·5 μ; thickness 15-15·5 μ.

Scotland.—Bressay, Shetlands!

This species stands nearest to *C. contractum* Kirchn., but is distinguished by its broad, truncate apex. This feature causes the cells to be proportionately shorter.

30. *Cosmarium subaversum* Borge.

(Pl. LXI, fig. 38.)

Cosmarium subaversum Borge, Algologiska Notiser, 1897, p. 211, t. 3, f. 1.

Cells small, about 1½ times longer than broad, moderately constricted, sinus open and subrectangular; semicells obversecircular, upper angles well rounded,

Zygospore unknown.

Length 24·5–26 μ; breadth 18–19·5 μ; breadth of isthmus 9 μ.

SCOTLAND.—Mull in Argyll; in plankton (Borge).

C. subaversum Borge should be compared with C. aversum West & G. S. West, a species described from Madagascar. It is distinguished from that species by its much broader isthmus, by the more convex apices of the semicells, and by the elliptical vertical view. The cell-wall also is smooth, whereas that of C. aversum is irregularly punctate.

(Pl. LXII, fig. 1.)

Ursinella trachondra Kuntze, Revis. gen. plant. 1891, p. 925.

Cells small, about 1½ times as broad as long, very deeply constricted, sinus very narrow and linear; semicells transversely semi-elliptic (or very depressed-subsemicircular), basal angles rounded, apex truncate-convex, with a granule just above and near the extremity of each linear sinus. Side view of semicell circular with a basal granule on each side. Vertical view elliptic, ratio of axes about 1:2·25, with two granules on each side rather far apart. Cell-wall smooth. Chloroplasts axile, with only one pyrenoid.

Zygospore globose and smooth, sometimes showing a tendency to elongate irregularly.

Length 20·5 μ; breadth 23–26·3 μ; breadth of isthmus 6–7 μ; thickness 10·7 μ.

ENGLAND.—Near Chapel Wood, S.E. Surrey!

SCOTLAND.—Ross, Banff, Aberdeen, Kincardine, Forfar, and Perth; near Kingshouse, Argyll; zygospores from Deeside, Aberdeen (Roy & Bissett).
IRELAND.—Lough Gartan, Donegal! Tipperary (Archer).

32. Cosmarium depressum (Näg.) Lund.
(Pl. LXII, figs. 2–5.)

Staurastrum convergens (Ehrenb.) Menegh. β inermis Jacobs. Desm. Danem. 1876, p. 208.

Ursinella depressa Kuntze, Revis. gen. plant. 1891, p. 924.

U. Scenedesmus Kuntze, l. c. p. 925.

Cosmarium Scenedesmus Delp. forma punctata West, Alg. W. Ireland, 1892, p. 145; Turner, Freshw. Alg. E. India, 1893, p. 60, t. 8, f. 61 ["β punctatum"].

Zygospore globose or ellipsoid, smooth.

Length 37–43 μ; breadth 40–50 μ; breadth of isthmus 12–14 μ; thickness 17·5–20 μ; diam. zygosp. about 35 μ.

ENGLAND.—Malham Tarn, W. Yorks! Skipwith Common, E. Yorks! Epping Forest, Essex! Thursley Common, Surrey!

WALES.—Capel Curig, Llyn Idwal, and Llyn Ogwen, Carnarvonshire!
Scotlant.—Sutherland !, Ross, Inverness !, Aberdeen, Perth! (Roy & Bisset). Lewis and Harris, Outer Hebrides! Orkneys! Shetlands! Not uncommon in the plankton!

Ireland.—Donegal! Mayo! Galway! Kerry! Dublin and Wicklow (Archer). Londonderry!

There appears to be no doubt of the almost strict identity of "Euastrum depressum Näg." (1849) and "Cosmarium Scenedesmus Delp." (1877). Lundell first pointed out the affinities of this Desmid, and also placed it under the genus Cosmarium as C. depressum Näg. (Lund.).

C. depressum is distinguished from C. Phaseolus by its proportionately greater breadth, by its depressed-elliptic semicells (not reniform), and by the absence of a central protuberance. It also bears a great resemblance to Arthrodesmus convergens Ehrenb. without the spines, and Jacobsen actually referred it to this species as "var. inermis."

Var. achondrum (Boldt) West & G. S. West. (Pl. LXII, figs. 6–9.)

Cells as long as broad, or nearly so; semicells sub-hexagonal-elliptic, apex broader and more truncate.

Length 37–51 μ; breadth 40–51 μ; breadth of isthmus 12–17 μ; thickness 22–23 μ.

England.—Malham Tarn, W. Yorks!

Wales.—Capel Curig Lakes, Carnarvonshire!

Scotland.—Near Loch Coruisk in Skye, Inverness (Roy & Bissett). Mull in Argyll (Borge). General in the plankton of the mainland and the Outer Hebrides!

Ireland.—Lough Gartan, Donegal! Lakes between Clifden and Roundstone, Galway!

There are two very strong reasons for referring this variety to *C. depressum* (Näg.) Lund. rather than to *C. Phaseolus* Bréb. In the first place, there is an entire absence of the central protuberance which is a characteristic feature of all forms of *C. Phaseolus*; secondly, it is associated in large numbers with numerous specimens of *C. depressum* in the plankton of many of the lakes of the British Islands. Numerous intermediate forms occur in the plankton which clearly connect it with the more rounded typical forms of *C. depressum*. It is very variable in size and also in the width of its isthmus.

Var. reniforme var. nov. (Pl. LXII, fig. 10.)

Cells rather small; semicells narrowly reniform, sinus slightly open.

Length 21 μ; breadth 26 μ; breadth of isthmus 6.5 μ.

England.—Helvellyn, Westmoreland!

This variety differs from *C. subdepressum* West & G. S. West in the open sinus, the smooth cell-wall, and the presence of only one pyrenoid in each semicell.

33. Cosmarium subquadrans sp. nov.

(Pl. LXII, figs. 11–13.)

Cells small, a little broader than long, oblong-quadrate, very deeply constricted, sinus very narrowly linear, slightly dilated at the extremity; semicells transversely oblong, basal angles obtuse, sides almost parallel in the lower half, upper half well rounded to form the upper angles, apex broad and truncate (slightly convex). Side view of semicell circular. Vertical view fusiform elliptic, ratio of axes about 1 : 2.14. Cell-wall smooth. Chloroplasts axile, each with two pyrenoids.

Zygospore unknown.
Length 21.5–25 μ; breadth 26.5–30 μ; breadth of isthmus 6.5–8.7 μ; thickness 14 μ.

ENGLAND.—Near Bowness, Westmoreland!

IRELAND.—Small lakes between Clifden and Roundstone, Galway!

This species comes near to *C. quadrans* Turn., but differs in being less quadrate, in its proportionately greater breadth, in the more rounded upper angles of the semicells, and consequently in the much shorter sides. The cell-wall also is smooth.

It should also be compared with *C. subdepressum* West & G. S. West (‘Some N. Amer. Desm.’ 1896, p. 247, t. 15, f. 15), from which it is distinguished by the angular form of its semicells, by the stouter vertical view, and by the smooth cell-wall.

34. Cosmarium succisum West.

(Pl. LXII, figs. 14–16.)

C. tinctum Ralfs var. *succisum* West & G. S. West, Alg. N. Ireland, 1902, p. 34.

Cells minute, about as long as broad, moderately constricted, sinus open, with a short, narrow extremity; semicells trapeziform-elliptic, angles rounded, sides slightly retuse, apex broadly truncate (or very slightly concave). Side view of semicell circular. Vertical view elliptic, very slightly subtumid at the middle on each side. Cell-wall smooth and of a yellow or reddish-brown colour. Chloroplasts axile with one pyrenoid.

Zygospore unknown.

Length 10–12.5 μ; breadth 11–12.5 μ; breadth of isthmus 3.75–5 μ; thickness 6 μ.

ENGLAND.—Wigton Moor, W. Yorks! Riccall and Skipwith Commons, E. Yorks! Puttenham Common, Surrey!

WALES.—Capel Curig, Carnarvonshire!

IRELAND.—Near Glenties and Lough Anna, Donegal! Creggan and Derrycclare Loughs, and Clifden, Galway!
Lough Dervadd, Armagh! Slieve Donard and Slieve Bearnagh, Down!

This species is distinguished at once from *C. tinctum* Ralfs by the form of its semicells both in the front and the vertical view.

It differs from *C. abbreviatum* Racib. in its smaller size, its different sinus, its relatively greater length, in the form of its semicells, the slight central protuberance of the vertical view, and the colour of its cell-wall. From *C. pseudobiremum* Boldt, it is distinguished by the form of its semicells, having the apex more truncate, by the less tumid vertical view, by its smaller size, and by the reddish-brown cell-wall.

35. **Cosmarium subretusiforme** West & G. S. West.
(Pl. LXII, fig. 19.)

Cells very minute, 1½ times longer than broad, moderately constricted, sinus open and obtuse; semicells subrectangular, basal angles broadly rounded, upper part of sides retuse, upper angles acute, apex broadly truncate and straight. Side view of semicell elliptic-subcircular. Vertical view elliptic with subacute poles, ratio of axes about 1 : 2.2. Cell-wall smooth.

Zygospore unknown.

Length 7.8–8 μ; breadth 6.2–6.5 μ; breadth of apex 5.5 μ; breadth of isthmus 4.5 μ; thickness 3 μ.

ENGLAND.—Borrowdale, Cumberland!

This minute species approaches *Cosmarium retusiforme* (Wille) Gutw. in its front view, but is distinguished by its much smaller size, its broader apices, and its different side and vertical views.

36. **Cosmarium retusiforme** (Wille) Gutw.
(Pl. LXII, figs. 17, 18.)

Cells small, a little longer than broad, deeply constricted, sinus narrow, opening outwards; semicells truncate-subpyramidate, lower half of sides rounded, upper half markedly retuse, apex widely truncate and straight, upper angles sharp and rectangular. Side view of semicell ovate, upper part of sides retuse. Vertical view elliptic, inflated at the middle on each side. Cell-wall smooth. Chloroplasts axile, with one pyrenoid.

Zygospore unknown.

Length 22·5-24 μ; breadth 19-19·5 μ; breadth of isthmus 6-7 μ; breadth of apex 9-12 μ; thickness 12-13 μ.

IRELAND.—Ballynahinch, Galway!

This species bears some resemblance to C. retusum (Perty) Rabenh., but the latter is larger, more deeply constricted, with a more produced apical part of the semicells, which is not so wide, and is also sparsely furnished with granules. C. retusiforme differs from C. Hammeri in its more open sinus, its abruptly-truncate apex, its sharp superior angles, and in its smaller size.

37. Cosmarium Hammeri Reinsch.

(Pl. LXII, figs. 20, 21.)

Euastrum Hammeri Cohn, Desm. Bong. 1879, p. 270.

Ursinella Hammeri Kuntze, Revis. gen. plant. 1891, p. 924.

Cells of moderate size, about 1\(\frac{1}{4}\) times longer than broad, subhexagonal, deeply constricted, sinus narrowly linear with a dilated apex, opening outwards; semicells truncate-pyramidate, basal angles well rounded,

Zygospore unknown.

Length 40–50 μ; breadth 27–35 μ; breadth of isthmus 11–13 μ;

ENGLAND.—Westmoreland! (Bissett). W. Yorks. **WALES.**—Near Bodorgan, Anglesey!

SCOTLAND.—Near Rhiconich, Sutherland!

IRELAND.—Galway! Dublin and Wicklow (Archer.)

Despite its world-wide distribution the form of *C. Hammeri* described by Reinsch as "*A. majus*" is a very rare British Desmid. This form we regard as the type of the species, and it possesses an elliptical vertical view with no trace of a median inflation.

Var. homalodermum (Nordst.) nob. (Pl. LXII, figs. 22, 23.)

Cells rather larger, sometimes shorter; vertical view slightly tumid at the middle on each side; side view of semicell more ovate (sometimes subspherical); cell-wall thicker, very finely and often indistinctly punctate.
Length 54–66 μ; breadth 48–51 μ; breadth of apex about 19–20 μ; breadth of isthmus 18–19 μ; thickness 29–34 μ.

ENGLAND.—Westmoreland! W., N., and E. Yorks! Devon (*Bennett*). Cornwall! (*Marquand*).

WALES.—Moel Siabod, Snowdon, and Yr Orsedd, Carnarvonshire! Dolgelly, Merioneth!

SCOTLAND.—Ross, Inverness, Aberdeen, Kincardine, Forfar!, Perth, Stirling, Argyll (*Roy & Bissett*). Sutherland! Orkneys!

IRELAND.—Donegal! Galway! Kerry!

This variety differs principally from *C. Hammeri* in its larger size and in the tumid vertical view. It is, however, very variable, especially with regard to the sides of the semicells and the apex. The latter may be slightly retuse, straight, or convex, and the apices of the semicells of one individual may differ considerably.

In Britain it is found mostly in subalpine localities, especially in mountain springs and in the vicinity of dripping rocks.

We have included in this variety "*C. homalodermum var. rotundatum* Wille" as the side view of the semicell is somewhat variable. Intermediate stages can be met with between a subcircular and an ovate side view. Börgesen also finds this Desmid to be very variable in the Faeroes, and to reach a length of 70 μ and a breadth of 58 μ (*vide* ‘Freshw. Alg. Faeroes,’ 1901, p. 222).

Var. protuberans West & G. S. West. (Pl. LXII, figs. 24, 25.)

Cells rather small; vertical view with a median tumour on each side.

Zygospore globose, furnished with numerous, simple spines, which are dilated at the base.
Length 24-35 μ; breadth 18.5-21.5 μ; breadth of isthmus 7-7.5 μ; thickness 11-12.5 μ; diam. zygosp. without spines 30 μ, with spines 46 μ.

Scotland.—Harris, Outer Hebrides!

Geogr. Distribution.—United States.

In the zygospore we examined (from the United States) the apices of the spines were simple, but Wolle has figured a zygospore in which the spines are furcate.

Var. Hibernicum Cooke.

Cells about $1\frac{1}{3}$ times longer than broad, apices convex-truncate; in the side view with a minute tooth-like protuberance visible at the constriction.

Ireland.—Arklow, Co. Wicklow (Crowe).

38. *Cosmarium Nymannianum* Grun.

(Pl. LXII, figs. 26, 27.)

Ursinella Nymanniana Kuntze, Revis. gen. plant. 1891, p. 925.

Cells rather small, elongate-subhexagonal, about $1\frac{1}{3}$ times longer than broad, deeply constricted, sinus narrowly linear with a dilated extremity; semicells truncate-pyramidate, basal angles rounded, lower half of sides convex, upper half concave, upper angles rounded, apex retuse, in the centre with a large and conspicuous scrobiculation. Side view of semicell subcircular. Vertical view subrhomboid-elliptic, at the middle on each side thickened and showing the large scrobiculation, ratio of axes about $1:1.8$. Cell-wall distinctly punctate. Chloroplasts axile, each with one pyrenoid.

Zygospore unknown.
Length 44–48 μ; breadth 33–36·5 μ; breadth of apex 21 μ; breadth of isthmus 7·6–9·6 μ; thickness 20–22 μ.

WALES.—Moel Siabod!, Capel Curig (Cooke & Wills), and Llyn Teyrn on Snowdon!, Carnarvonshire.

SCOTLAND.—Sutherland!, Ross, Inverness, Aberdeen, Kincardine, Forfar, Perth, Argyll, Arran (Roy & Bissett). Orkneys!

IRELAND.—Near Loughs Magrath and Glentoran, Donegal! Oorid Lough and Ballynahinch, Galway! Glen Caragh, Castletown, and Lower Lake of Killarney, Kerry! Dublin and Wicklow (Archer).

C. Nymannianum bears considerable resemblance to *C. Hammeri*, but can be distinguished by its punctate cell-wall and by the large scrobiculation in the centre of the semi-cells.

Joshua reports the zygospores of this species from Alton, Hants, and from Cornwall, but neither describes nor figures them (vide Joshua, 'Notes Brit. Desm. II,' 1883).

(Pl. LXII, figs. 28–30.)

Didymidium (Cosmarium) trilobulatum Reinsch, Algenfl. Franken, 1867, p. 116, t. 9, f. 6.

Ursinella trilobulata Kuntze, Revis. gen. plant. 1891, p. 925.

Cells very small, a little longer than broad up to almost 1½ times longer than broad, deeply constricted, sinus narrowly linear with a slightly-dilated extremity;
semicells somewhat three-lobed, lobes short, subrectangular with rounded angles, apical lobe widest, apex straight or slightly convex, incisions between lobes wide and shallow. Side view of semicell broadly sub-elliptic. Vertical view elliptic, ratio of axes about 1:2. Cell-wall smooth. Chloroplasts axile with one pyrenoid.

Zygospore unknown.
Length 20–23 μ; breadth 13–20 μ; breadth of isthmus 3:8–4:4 μ; thickness 6–7:5 μ.

England.—Bowness, Westmoreland! New Forest, Hants!
Scotland.—Corbie Loch north, and Springhill west of Aberdeen; Loch of Lungen near Stonehaven, Kincardine; Buchanty in Fowlis Wester, Perth (Roy Bissett). Hoy, Orkneys! Near Scalloway, Shetlands!

Ireland.—Cloonee Lough, Kerry!

This species should be compared with C. Pokornyanum.

40. Cosmarium granatum Bréb.
(Pl. LXIII, figs. 1–3.)

Didymium (Cosmarium) granatum Reinsch, Algenfl. Frank, 1867, p. 109.
Cosmarium granatum Bréb. a. typicum Klebs, Desm. Ostpreuss, 1879, p. 32.
Euastrum (Cosmarium) granatum Gay, Monogr. loc. Conj. 1884, p. 59.
Ursinella granata Kuntze, Revis. gen. plant. 1891, p. 924.

Cells small, about $1\frac{1}{2}$ times as long as broad, sub-rhomboid-elliptic, deeply constricted, sinus narrowly linear, slightly dilated at the apex; semicells truncate-pyramidate, basal angles rounded-subrectangular, sides at the base subparallel, then converging towards the apex, commonly straight or slightly convex (rarely slightly concave), upper angles obtuse, apex narrowly truncate and straight. Side view of semicell elliptic-ovate. Vertical view elliptic, ratio of axes about 1 : 1.6. Cell-wall finely punctate. Chloroplasts axile, each with one pyrenoid.

Zygospore unknown.

Length 26–47 μ; breadth 19–30 μ; breadth of isthmus 6–9 μ; thickness 10.5–17.5 μ.

Scotland.—General! (Roy & Bissett). Not uncommon in the plankton! Orkneys! Shetlands!

Ireland.—General!

C. granatum Bréb. is one of the most widely distributed of all Desmids, being found in every part of the globe which
has been botanically investigated. As would be expected from its cosmopolitan distribution, it exhibits a considerable amount of variation, and some fifteen named varieties have been described by different authors.

In its most typical form the basal angles of the semicells are rectangular, and the upper portions of the sides are straight and rapidly converging to a somewhat narrow, sub-truncate apex. The sides are, however, frequently concave in their upper portions, this form having been named “var. concavum” by Lagerheim. As there is every intermediate condition we do not think the forms with the concave sides constitute a variety worthy of a special name.

Another form, which is sometimes met with abundantly, possesses slightly inflated semicells, so that the sides are distinctly convex and the apex is not so evidently sub-truncate. This form has been figured by Gutwinski (‘Nagj. dosel. Bosni Hercegovin. halugam.’ 1896, p. 374, t. 1, f. 2 d’) and by Borge (‘Subfoss. sötv. alg. Gotl.’ 1892, t. 1, f. 4).

Var. subgranatum Nordst. (Pl. LXIII, figs. 5–8.)

Semicells near the base at first diverging for a short distance, then with the lateral margins converging and 1–2-undulate, apex very narrowly truncate; vertical view narrowly elliptic and slightly tumid at the middle on each side.

Zygospore globose, furnished with a few short simple spines, each spine arising from the apex of a depressed-conical projection.

Length 24–30 μ; breadth 17–22 μ; breadth of isthmus 6–9 μ; thickness 13–14 μ; diam. zygosp. without spines 25–29 μ, with spines 32–34·5 μ.

ENGLAND.—Westmoreland! W., N., and E. Yorks! Lincolnshire! Essex! Cambridgeshire! Gloucester (with zygospores from near Cirencester)! Surrey! Devon! Cornwall!

SCOTLAND.—Largs and Cumbrae, Ayrshire! Suther-
land! Inverness! Orkneys! Shetlands! Sometimes in the plankton!

IRELAND.—Donegal! Mayo! Galway! Down! Louth! Tyrone!

In the British Islands this variety is almost as generally distributed as the type.

Some small forms were observed from Cambridgeshire intermediate in character between C. granatum var. subgranatum and C. granatoides Schmidle (‘Chlorophy.-Fl. Torfstiche Virnheim,’ 1894, p. 52, t. 7, f. 12; C. Meneghinii var. granatoides Schmidle, ‘Beitr. Algenfl. Schwarzwald. u. Rheineb.,’ 1893, p. 28, t. 6, f. 15). Consult G. S. West, ‘Alga-fl. Cambr.’ 1899, p. 115. It is most probable that “C. granatoides” is only one of the numerous varieties of C. granatum.

Var. elongatum Nordst. (Pl. LXIII, fig. 10.)

Cells twice as long as broad, less deeply constricted; semicells somewhat elongated on the basal part.

Length 48–59 μ; breadth 25·2–29 μ; breadth of isthmus 14 μ.

SCOTLAND.—Near Aboyne, at Homehead in Logie-Coldstone, and in Ballochbuie near Balmoral, Aberdeen; Muchalls, Kincardine; Reeky Linn, Forfar (Roy & Bissett).

Schraaschmidt mentions the occurrence of zygospores of this variety in Afghanistan, but he neither describes nor figures them.

Var. Grunowii Roy & Biss. (Pl. LXIII, fig. 9.)

Cells with a more open sinus; semicells with rounder basal angles, convex lateral margins, and relatively broad apices.
Length 28 μ; breadth 17–18 μ; breadth of isthmus 5.2–6.7 μ.

Scotland.—Break Neck Fall in Glen Callater, Aberdeen (Roy & Bissett).

Geogr. Distribution.—Island of Banka.

We have not seen this variety and cannot definitely state whether it is correctly placed under Cosmarium granatum or not. We give a copy of Grunow’s figures, which are not very good.

41. Cosmarium Pokornyanum (Grun.) West & G. S. West.

(Pl. LXIII, figs. 11–15.)

C. Pokornyanum (Grun.) West & G. S. West, Notes Alg. II, 1900, p. 292; Alga-fl. Yorks. 1900, p. 79; Alg. N. Ireland, 1902, p. 32.

Cells small, about twice as long as broad, or nearly so, deeply constricted, sinus narrow, generally linear with a slightly-dilated apex; semicells subtrilobed or truncate-pyramidate from a base with parallel sides, basal angles rectangular, lower part of sides parallel, generally slightly retuse (rarely straight), upper part of sides longer, converging and widely concave, apex truncate and slightly retuse, upper angles rounded. (In those forms which are subtrilobed the apical lobe is subquadrate.) Side view of semicell ovate-truncate. Vertical view rhomboid-elliptic, ratio of axes about
1:1.3. Cell-wall smooth. Chloroplasts axile, with one pyrenoid.

Zygospore unknown.

Length 23–39 μ; breadth 14–22 μ; breadth of apex 7–11 μ; breadth of isthmus 6.5–11 μ; thickness 9–17 μ.

Scotland.—Inverness, Aberdeen, Kincardine, Forfar, Perth, Stirling (Roy & Bissett).

Ireland.—Clonee Lough, Kerry! Dublin and Wicklow (Archer). Slieve Donard, Down!

This minute species is principally subalpine in habitat, being frequently found among mosses on wet limestone rocks, and its occurrence in the fen district of Cambridgeshire is certainly remarkable.

We have explained at length the reasons for regarding Cosmarium angustatum (Wittr.) Nordst. as synonymous with Euastrum Pokornyanum Grun. in the ‘Journal of Botany,’ 1900, p. 292–293, and in the ‘Alga-fl. Yorks,’ 1900, p. 79.

C. Pokornyanum should be compared with C. trilobulatum, from which it is distinguished by its retuse lobes and by the tumid vertical view.

42. Cosmarium pseudatlanthoideum West.

(Pl. LXIII, figs. 16, 17.)

Cosmarium pseudatlanthoideum West, Alg. Eng. Lake Distr. 1892, p. 725, t. 9, f. 21; Schmidle, in Hedwigia, 1895, p. 84.

Cells very small, about 1½ times longer than broad, deeply constricted, sinus very narrow, slightly open outwards; semicells subtriangular from a broad base, basal angles broadly rounded, lower half of sides convex, upper half concave, apex narrow and rounded. Side view of semicell elliptic-ovate. Vertical view

Zygospore unknown.
Length 19.5 μ; breadth 13.5 μ; breadth of isthmus 4 μ; thickness 6.5 μ.

England.—Loughrigg, Westmoreland!

Geogr. Distribution.—United States (Colorado).

This small species is principally distinguished from C. atlanthoideum Delp. in being relatively narrower, and in the narrowly-elliptic vertical view without any trace of a median inflation.

43. Cosmarium subtumidum Nordst.
(Pl. LXIII, figs. 18–20.)

Cells small, about 1½ times as long as broad, deeply constricted, sinus very narrow with a dilated apex; semicells pyramidate-semicircular, basal angles rounded, lateral margins convex, apex widely truncate and generally straight. Side view of semicell circular. Vertical view elliptic, sometimes with the rounded poles very slightly produced, ratio of axes 1:1.84. Cell-wall minutely punctate. Chloroplasts axile, with one pyrenoid.

Zygospore globose and spiny, spines obtuse.
Length 30–40 μ; breadth 26–33 μ; breadth of isthmus 8–10.5 μ; thickness 17–19 μ; diam. zygosp. without spines 30–32 μ, with spines 44–51 μ; length of spines 6–12 μ; thickness of spines 3–5 μ.

England.—Westmoreland! W. and N. Yorks! Surrey! Kent! Cornwall!

Wales.—Llyn Pencraig near Bettws-y-coed, Llyn Bodgynwydd, Moel Siabod, Llyn Bochlwyd, Llyn-y-
OOSMARIUM.

SCOTLAND.—Loch Inver, Sutherland; Poolewe and Falls of Connon, Ross; Brin, Inverness (Roy & Bissett). Rhiconich, Sutherland! Craig-an-Lochan and near Spittal of Glen Shee, Perth! Mull in Argyll (Borge). New Galloway, Kirkeudbright! Hoy, Orkneys!

C. subtumidum differs from C. tumidum in the pyrami-date form of the semicells and the truncate apices, in the much narrower vertical view, and in the structure of the chloroplasts. It differs from C. nitidulum in the form of its semicells, which are less trapeziform with more convex sides. It is not an uncommon species in the more upland, boggy districts of the British Islands, and may sometimes be obtained in quantity.

Var Klebsii (Gutw.) West & G. S. West. (Pl. LXIII, figs. 21–23.)

Basal angles of semicells more widely rounded, and the sides more convergent, making a narrower truncate apex.

Length 32–41 μ; breadth 29–35 μ; breadth of isthmus 7–11 μ; thickness 16–18 μ.

ENGLAND.—Pilmoor, N. Yorks! Near Ely and Wicken Fen, Cambridgeshire! New Forest, Hants!

WALES.—Llyn-y-cwm-ffynon, Carnarvonshire!

SCOTLAND.—Not uncommon in the plankton of Inverness, and of Lewis and Harris, Outer Hebrides!

IRELAND.—Near Glenties, and Loughs Akibbon, Gartan, Magrath, and Nacurg, Donegal! Lough Fea
and plankton of Lough Beg, Londonderry! Plankton of Lough Neagh and of Upper River Bann! Lough Derryadd, Armagh!

Geogr. Distribution.—Germany. Galicia in Austria.

This variety differs so little from the type that it is scarcely possible to distinguish between them. It also closely resembles in outline C. Phaseolus Brèb. var. elevatum Nordst., but the vertical view does not possess the median protuberances.

44. Cosmarium galeritum Nordst.

(Pl. LXIII, figs. 24, 25.)

Ursinella galerita Kuntze, Revis. gen. plant. 1891, p. 924.

Cells of moderate size, about $1\frac{1}{2}$ times longer than broad, deeply constricted, sinus narrowly linear with a dilated extremity, slightly widening outwards; semicells pyramidate-trapeziform or truncate-pyramidate, basal angles well rounded, sides almost straight or slightly convex, upper angles rounded, apex narrowly truncate and generally slightly convex. Side view of semicell subcircular. Vertical view elliptic, ratio of axes about 1 : 1.9. Cell-wall punctate. Chloroplasts axile, each with two pyrenoids.

Zygospore unknown.

Length 51–56.5 μ; breadth 42–46 μ; breadth of isthmus 15.5–17 μ; thickness 23–24 μ.

Wales.—Llyn Coron, Anglesey!
SCOTLAND.—Near Loch Inver, Sutherland; near Loch Coruisk in Skye, Inverness; Ben-na-chie, Morven, Birse, and Aboyne, Aberdeen; Perth!; near Corrie, Arran (Roy & Bissett). Near Lerwick, Shetlands!

IRELAND.—Lough Anna and Sproule’s Lough, Donegal! Ballynahinch, and Loughs Creggan, Derryclare, Letereen, and Shannacloontippen, Galway! Adrigole, Kerry! Lough Derryadd, Armagh!

C. galericulatum somewhat resembles C. Lundellii var. ellipticum, but the semicells are mere pyramidate, the poles of the vertical view are not so pointed, and in size it is a little smaller. It is a Cosmarium which in the British Islands is constantly associated with C. tetragonum, C. speciosum, C. notabile, C. ochthodes, and other upland species.

45. Cosmarium pseudonitidulum Nordst.

(Pl. LXIII, fig. 26.)

Cells of moderate size, truncate-elliptic, about 1\(\frac{3}{4}\) times longer than broad, deeply constricted, sinus narrowly linear with a dilated extremity; semicells subtrapezoid or truncate-pyramidate, basal angles rounded, sides convex, at first suberect and then gradually converging, upper angles rounded, apex broadly truncate and very slightly convex. Side view of semicell ovate-circular. Vertical view elliptic, ratio of axes about 1 : 1.6. Cell-wall punctate. Chloroplasts axile, each with two pyrenoids. Zygospore unknown.
Length 42 μ; breadth 33 μ; breadth of isthmus 10 μ; thickness 17–18 μ.

England.—Bowness, Westmoreland! Cullingworth, W. Yorks! Mickle Fell, N. Yorks!

Wales.—Bettws-y-coed!, Capel Curig! (Cooke & Wills), Snowdon (Roy), and Yr Orsedd!, Carnarvonshire.

Scotland.—Orkneys!, Sutherland, Ross, Inverness, Aberdeen, Kincardine, Forfar, Perth, Argyll, Arran (Roy & Bissett).

Ireland.—Adrigole, Kerry!

This species stands very near to C. nitidulum De Not., but differs in the form of the semicells, which are wider at the apex, and in the presence of two pyrenoids in each chloroplast. From C. galeitrum Nordst. it is distinguished by its smaller size and by its less pyramidate semicells with broader apices.

Var. validum nob. (Pl. LXIII, figs. 27–30.)

Cells larger than in the type, with the basal angles sometimes more rectangular (not so rounded); cell-wall very firm and punctate.

Length 56–78 μ; breadth 46–59 μ; breadth of isthmus 17–25 μ; thickness 28–33 μ.

England.—Near Bowness, Westmoreland (Bissett). Cautley Spout, W. Yorks!

Wales.—Capel Curig, Carnarvonshire!

Scotland.—Poolewe, Ross; near Brin, Inverness; Glen Callater, Aberdeen; Canlochan, Forfar; Rannock, Perth; Alva Glen, Stirling (Roy & Bissett).

This variety only differs from typical *C. pseudonitidulum* in its larger size and sometimes in its more rectangular basal
angles. The latter may even be slightly produced as in fig. 28, Pl. LXIII. Although originally described as a variety of *C. pachydermum*, we do not think it has any close affinity with that species, the outward form of the semicells being so very different.

46. **Cosmarium nitidulum** De Not.

(Pl. LXIV, figs. 1–3.)

Euastrum (Cosmarium) nitidulum Gay forma *genuina_ Gay, Monogr. loc. Con. 1884, p. 59.

Ursinella nitidula Kuntze, Revis. gen. plant. 1891, p. 925.

Cells of moderate size, a little longer than broad, deeply constricted, sinus very narrowly linear with a slightly-dilated extremity; semicells truncate-subsemicircular, basal angles broadly rounded, sides convex and converging upwards, upper angles slightly rounded, apex small, truncate-convex, straight, or slightly retuse. Side view of semicell subcircular. Vertical view elliptic. Cell-wall very minutely punctate (punctations often scarcely visible). Chloroplasts axile, each with one pyrenoid.

Zygospore unknown.

Length 30–41 μ; breadth 23–33 μ; breadth of isthmus 8–10 μ; thickness 16–22·5 μ.

England.—Cullingworth, W. Yorks! Mickle Fell, Pilmoor, and near Bees Cliff, N. Yorks! Leicestershire (Roy). Thursley Common, Surrey!

Wales.—Capel Curig (Cooke & Wills) and Bethesda!, Carnarvonshire.

Scotland.—Heughhead near Aboyne, and foot of
Culblean, Aberdeen; N.W. side of Kerloch, Kincardine (Roy & Bissett). Meal Odhar, Perth!

IRELAND. — Lough Derryclare, Kylemore, and lakes between Clifden and Roundstone, Galway! Lough Guiteane and Sugar Loaf Mt., Kerry!

There is very little distinction between C. nitidulum and C. pseudonitidulum except for the difference in the pyrenoids. The semicells of C. nitidulum are generally more angular with a narrower apex and straighter sides.

C. nitidulum and C. subtumidum are also very closely related, but the semicells of the latter are much more rounded, with broader basal angles, more convex sides, and a less angular apex.

47. Cosmarium canaliculatum West & G. S. West. (Pl. LXIV, fig. 4.)

Cells of medium size, about 1½ times longer than broad, deeply constricted, sinus narrowly linear with a slightly-dilated extremity; semicells truncate-pyramidal, basal angles well rounded, sides almost straight or slightly convex, upper angles rounded, apex truncate and slightly convex. Side view of semicell shortly ovate towards the base with a slight swelling on each side. Vertical view elliptic, with a wide protuberance at the middle on each side. Cell-wall very thick, densely and irregularly scrobiculate, causing the exterior to appear slightly rough.

Zygospore unknown.

Length 72 μ; breadth 51 μ; breadth of isthmus 17.5 μ; thickness 35 μ.

ENGLAND. — Near Goring, S.E. Oxfordshire!

This species is rather smaller than the average examples of _Cosmarium pyramidatum_ Bréb., from which it is distinguished by the form of the front view, by its central protuberance, its
thicker cell-wall, and its more pronounced scrobiculations. Owing to the thickness of the cell-wall the latter have the appearance of short canals, and their large size and the comparative closeness of their disposition give the exterior of the cell-wall a slightly rough appearance.

48. **Cosmarium pyramidatum** Bréb.

(Pl. LXIV, figs. 5–7.)

Cells large, about $1\frac{1}{2}$ times as long as broad, truncate-elliptic in outline, deeply constricted, sinus very narrow and dilated towards the apex; semicells truncate-pyramidate, basal angles well rounded, sides convex and in the upper part converging, upper angles obtuse, apex narrowly truncate. Side view of semicell elliptic oblong. Vertical view elliptic, ratio of axes about 1 : 1.7. Cell-wall minutely scrobiculate. Chloroplasts axile, each with two pyrenoids.

(*Zygospore globose and tuberculated.*)

Length 58–100 μ; breadth 45–62 μ; breadth of isthmus 17.5–20 μ; thickness 26.5–36 μ.

Wales.—General in Carnarvonshire! Dolgelly, Merioneth (Ralf's).

Scotland.—General! (Roy & Bissett). Common in the Outer Hebrides! Orkneys! Shetlands!

Ireland.—Donegal! Mayo! Galway! Kerry! Dublin and Wicklow (Archer). Down!

C. pyramidatum is generally distributed in the peat-bogs and peaty pools of the British Islands. It is also abundant in the rocky pools and lakes of the western areas of Scotland and Ireland.

Ralfs states that he obtained the zygospores at Dolgelly in Wales, but they do not appear to have been observed since. It is quite possible that the zygospores Ralfs examined were those of C. pseudopyramidatum, as that species was included in his C. pyramidatum. Moreover, he describes them as "tuberculated," which is a conspicuous feature of the zygospores of C. pseudopyramidatum.

The largest form of the species (forma tropica West & G. S. West) is known from Angola, W. Africa. It reaches a length of 170 μ and a breadth of 90 μ, and the semicells are slightly inflated with less truncate apices.

Var. angustatum West & G. S. West. (Pl. LXIV, fig. 8.)

Cells narrower than in the type, almost twice as long as broad; semicells more evidently pyramidate, with straighter sides, basal angles very little rounded and almost submamillate.

Length 90–92 μ; breadth 48–50 μ; breadth of isthmus 13·5–15 μ.

England.—Near Bowness, Westmoreland!

Ireland.—Castletown, Kerry!
49. *Cosmarium pseudopyramidatum* Lund.

(Pl. LXIV, figs. 9–12.)

Cosmarium pyramidatum Bréb. in Ralfs' Brit. Desm. 1848, p. 94, t. 15, f. 4 a, e, f.

C. pseudopyramidatum Bréb. var. minus Reinsch in Rabenh. Alg. 1868, no. 1902, f. 6.

_Euastrum* (Cosmarium) *pseudopyramidatum* Gay, Monogr. loc. Conj. 1884, p. 60.

Ursinella pseudopyramidata Kuntze, Revis. gen. plant. 1891, p. 925.

Cells of moderate size, about $1\frac{3}{4}$ times as long as broad, deeply constricted, sinus narrowly linear; semi-cells truncate-pyramidate or truncate-semi-elliptical, basal angles rounded, sides convex and converging to apex which is narrowly truncate, upper angles obtuse. Side view of semicell broadly elliptic. Vertical view elliptic, ratio of axes about 1 : 1·8. Cell-wall distinctly punicate. Chloroplasts axile, each with one pyrenoid. Zygospore globose or ellipsoid, furnished with scattered submamillate warts.

Length 43–50 μ; breadth 25–33 μ; breadth of isthmus 7–10·5 μ; thickness 17–19·5 μ; diam. zygosp. with warts 32–44 μ.

Wales.—Near Bethesda!, Capel Curig! (Cooke & Wills), Glyder Fawr!, and Pen-y-gwryd (Roy), Carnarvonshire. Llyn Coron, Anglesey!

Scotland.—Sutherland!, Ross, Inverness!, Aberdeen, Kincardine, Forfar!, Perth!, Dumbarton, Argyll, Arran (Roy & Bissett). Stirling! Common in the Outer Hebrides!
IRELAND.—Donegal! Mayo! Galway! Kerry! Dublin and Wicklow (Archer). Down!

C. pseudopyramidatum is not so abundant as *C. pyramidatum*, from which it is distinguished by its much smaller size and by the presence of only one pyrenoid in the chloroplast of each semicell.

Nordstedt’s “forma minor” and “forma major,” which he describes from Spitzbergen, we include within the general range of size for this species. Lundell also mentions a “forma major”; length 52–64 μ; breadth 32–40 μ; breadth of isthmus 11–15 μ. This he states to be identical with Ralfs’ figs. 4 d, e, and f of *C. pyramidatum*. It is, however, difficult to fix an arbitrary range of size for a “forma major,” and these dimensions should really be included with those given under the description of the species.

Var. *stenonotum* Nordst. (Pl. LXIV, fig. 13.)

Cells much larger, upper part of semicells suddenly narrowed, lateral margins below the apex slightly retuse. With one pyrenoid in each chloroplast.

Length 78–80 μ; breadth 46–48 μ; breadth of isthmus 16–17 μ; thickness 28–30 μ.

WALES.—Capel Curig and Glyder Fawr, Carnarvonshire (Roy).

SCOTLAND.—Poolewe, Ross; Aberdeen; Kincardine; Ben Laoigh, Argyll (Roy & Bissett).

This variety differs from *C. pyramidatum var. angustatum* in the more rectangular basal angles of the semicells and the more protracted apices, as well as in the single pyrenoids.

A small form of it is known from Australia and the West Indies:—length 35–36·5 μ; breadth 22–24 μ; breadth of isthmus 6·5–12 μ; thickness 13·5–16 μ.

(Pl. LXIV, figs. 14–16.)

Ursinella variolata Kuntze, Revis. gen. plant. 1891, p. 926.

Cells small, about 1\(\frac{1}{2}\) times longer than broad, deeply constricted, sinus narrowly linear with a slightly-dilated apex; semicells semi-elliptic, basal angles very slightly rounded, sides convex and upwardly converging, apex very narrow, truncate, and often subretuse. Side view of semicell obovate-elliptic. Vertical view broadly elliptic, ratio of axes about 1 : 1·8. Cell-wall firm, densely scrobiculate, the scrobiculations being relatively large and very conspicuous. Chloroplasts axile, each with one pyrenoid.

Zygospore unknown.

Length 32–35 μ; breadth 18–21 μ; breadth of isthmus 5–6·5 μ; thickness 15–16·5 μ.

England.—Near Bowness, Westmoreland (Bissett). Baildon, W. Yorks! Thursley Common, Surrey! New Forest, Hants!

Wales.—Capel Curig, Carnarvonshire! (Cooke & Wills).

Scotland.—Ross, Aberdeen, Kincardine, Perth, Argyll, Arran (Roy & Bissett). Sutherland! Outer Hebrides! Orkneys!

Ireland.—E. of Glenties, Donegal! Ballynahinch,
Lough Athry, and lakes between Clifden and Roundstone, Galway! Adrigole, Kerry! Dublin and Wicklow (Archer).

This characteristic little species is easily distinguished from *C. pseudopyramidatum* by its smaller size and its densely-scrobiculate cell-wall. It is a much rarer Desmid than either of the two preceding species.
EXPLANATIONS OF THE PLATES.
EXPLANATION OF THE LETTERING.

a, a'. Front view of cell or semicell.
b, b'. Vertical view.
c. Side view.
d. Basal view of semicell.
PLATE XXXIII.

FIGS. 1-3.—*Euastrum ventricosum* Lund. All × 430 . 4
4-6.—*E. crassum* (Bréb.) Kütz. 4 and 6, × 430; 5, × 400. The upper semicell of fig. 6 shows a common variation in which there is a median rounded protuberance on the sides of the semicell . 5
7-8.—*E. crassum* var. *scrobiculatum* Lund. All × 430 . 7
PLATE XXXIV.

FIGS.
1-2.—Euastrum humerosum Ralfs. 1, x 520; 2, x 400 (after Ralfs) 8
3-6.—E. pinnatum Ralfs. 3-5, x 430; 6, x 400 . 10
7-9.—E. oblongum (Grev.) Ralfs. All x 430. Fig. 8 is the side view and fig. 9 the vertical view taken from a smaller specimen than fig. 7 . 12
10.—E. oblongum var. depauperatum West & G. S. West. x 520 15
PLATE XXXV.

FIGS.

1.—Euastrum oblongum (Grev.) Ralfs var. cephalophorum West. x 400 14

2.—E. oblongum. Zygospore, x 220 14

3-7.—E. Didelta (Turp.) Ralfs. 3, 5, and 6, x 430;
 4, x 220; 7, zygospore, x 220 15

8-10.—E. ampullaceum Ralfs. 8 and 9, x 520; 10,
 zygospore, x 390 19

11-12.—E. affine Ralfs. 11, x 400 (after Ralfs); 12,
 430 17
PLATE XXXVI.

FIGS.

<table>
<thead>
<tr>
<th>FIGS</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.— Euastrum sinuosum Lenorm. $\times 430$</td>
<td>20</td>
</tr>
<tr>
<td>2–3.— E. sinuosum var. reductum West & G. S. West. $2, \times 430$; $3, \times 520$</td>
<td>22</td>
</tr>
<tr>
<td>4.— E. Jenneri Arch. $\times 400$ (after Ralfs)</td>
<td>22</td>
</tr>
<tr>
<td>5–6.— E. aboense Elfv. $5, \times 520$; 6, vertical view, $\times 500$ (after Elving)</td>
<td>23</td>
</tr>
<tr>
<td>7–8.— E. inerme (Ralfs) Lund. $\times 430$</td>
<td>24</td>
</tr>
<tr>
<td>9.— E. cuneatum Jenner. $\times 520$</td>
<td>25</td>
</tr>
<tr>
<td>10–13.— E. ansatum Ralfs. 10 and $12, \times 430$; $11, \times 520$; 13, zygospore, $\times 430$</td>
<td>27</td>
</tr>
<tr>
<td>14–15.— E. ansatum var. pyxidatum Delp. $14, \times 416$ (after Delponte); $15, \times 520$</td>
<td>29</td>
</tr>
<tr>
<td>16–17.— E. obesum Josh. $16, \times 300$ (after Joshua); $17, \times 520$</td>
<td>29</td>
</tr>
</tbody>
</table>
PLATE XXXVII.

<table>
<thead>
<tr>
<th>FIGS.</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.— Euastrum pingue Elfv. x 520</td>
<td>30</td>
</tr>
<tr>
<td>2–5.— E. insigne Hass. 2, x 430; 3–5, x 520. Fig. 5 is a stouter form than fig. 2, but all intermediate forms exist</td>
<td>31</td>
</tr>
<tr>
<td>6.— E. intermedium Cleve. x 520</td>
<td>33</td>
</tr>
<tr>
<td>7.— E. Webbianum Turn. (forma major Turn.). x 400 (after Turner)</td>
<td>34</td>
</tr>
<tr>
<td>8.— E. Sendtnerianum Reinsch. x 1200 approx. (after Reinsch)</td>
<td>34</td>
</tr>
<tr>
<td>9–10.— E. Turnerii West. 9, x 400; 10, x 430</td>
<td>37</td>
</tr>
<tr>
<td>11–13.— E. rostratum Ralfs. 11, x 400 (after Ralfs); 12 and 13, x 520</td>
<td>35</td>
</tr>
<tr>
<td>14–15.— E. spinosum Ralfs. 14, x 400 (after Ralfs); 15 x 520</td>
<td>38</td>
</tr>
<tr>
<td>16–19.— E. bidentatum Näg. 16–18, x 430; 19, zygospore, x 520</td>
<td>39</td>
</tr>
</tbody>
</table>
PLATE XXXVIII.

1. — *Euastrum pictum* Börg. × 555 (after Börgesen) 41
2. — *E. pictum* forma. × 430 . 42
3-4. — *E. divaricatum* Lund. 3, × 400 (after Lundell); 4, × 520 . 42
5-8. — *E. dubium* Näg. 5 and 6, × 520; 7 and 8, × 430 43
9. — *E. dubium* var. *anglicanum* (Turn.) West & G. S. West. × 500 (after Turner) . 44
10. — *E. dubium* var. *cambrense* (Turn.) West & G. S. West. × 500 (after Turner) . 45
11. — *E. dubium* var. *Snowdoniense* (Turn.) West & G. S. West. × 500 (after Turner) . 45
12-13. — *E. erosum* Lund. 12, × 400 (after Lundell); 13, × 400 . 45
14-15. — *E. pulchellum* Bréb. 14, × 520; 15, × 430 . 46
16-21. — *E. elegans* (Bréb.) Kütz. 16 and 18, × 430; 17, 19, and 20, × 520; 21, × 625; 18 and 19, zygospores. Fig. 20 is an abnormal, much rounded form . 48
22-23. — *E. elegans* var. *pseudelegans* (Turn.) West & G. S. West. 22, × 500 (after Turner); 23, × 520 . 49
24-25. — *E. elegans* var. *Novo Semlise* Wille. × 520 . 49
26. — *E. elegans* var. *ornatum* West. × 520 . 50
27. — *E. elegans* var. *ornithocephalum* (Benn.) West & G. S. West × 400 (after Bennett) . 50
28-29. — *E. binale* (Turp.) Ehrenb. × 520 . 51
30. — *E. binale* forma *secta* Turn. × 400 . 53
31-32. — *E. binale* forma *Gutwinski* Schmidle. × 520; 32, zygospore . 53
33. — *E. binale* forma *hians* West. × 400 . 53
34. — *E. binale* var. *retusum* West. × 520 . 54
35. — *E. binale* var. *elobatum* Lund. × 400 (after Lundell) . 54
36. — *E. binale* var. *subelobatum* West. × 400 . 55
37. — *E. minutissimum* West & G. S. West. × 500 (after Turner) . 57
PLATE XXXIX.

1-4.—Euastrum denticulatum (Kirchn.) Gay. 1-3, \(\times 520 \); 4, \(\times 430 \)
5.—E. denticulatum var. granulatum West. \(\times 400 \)
6-7.—E. incavatum Josh. & Nordst. 6, \(\times 400 \); 7, \(\times 570 \) (after Nordstedt)
8-9.—E. montanum West & G. S. West. \(\times 520 \)
10-12.—E. pectinatum Bréb. 10, \(\times 430 \); 11 and 12, zygosporangia; 11, \(\times 400 \); 12, \(\times 520 \)
13-15.—E. pectinatum var. inevolutum West & G. S. West. 13 and 14, \(\times 430 \); 15, \(\times 520 \)
16.—E. pectinatum var. brachylobum Wittr. \(\times 400 \) (after Wittrock)
17.—E. crassangulatum Borg. \(\times 555 \) (after Börgesen)
18.—E. crassangulatum var. ornamentum West. \(\times 400 \)
19.—E. gemmatum Bréb. \(a \) and \(c \), \(\times 430 \); \(b \), vertical view of another specimen, \(\times 520 \)
20.—E. occidentale West & G. S. West. \(\times 430 \)
PLATE XL.

<table>
<thead>
<tr>
<th>FIGS</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.— Euastrum verrucosum Ehrenb. (\times 430)</td>
<td>64</td>
</tr>
<tr>
<td>2—3.— E. verrucosum var. reductum Nordst. (2, \times 520);</td>
<td></td>
</tr>
<tr>
<td>3, (\times 400) (after Nordstedt). In fig. 2 there is a great</td>
<td></td>
</tr>
<tr>
<td>reduction of the polar lobe</td>
<td>65</td>
</tr>
<tr>
<td>4.— E. verrucosum var. coarctatum Delp. (\times 400)</td>
<td>66</td>
</tr>
<tr>
<td>5.— E. verrucosum var. coarctatum Delp. forma. (\times 400)</td>
<td>66</td>
</tr>
<tr>
<td>6.— E. verrucosum var. alatum Wolle. (\times 430)</td>
<td>67</td>
</tr>
<tr>
<td>7.— E. verrucosum var. planctonicum West & G. S. West. (\times 430).</td>
<td>67</td>
</tr>
<tr>
<td>8.— E. Cornubiense West & G. S. West. (\times 520)</td>
<td>70</td>
</tr>
<tr>
<td>9—10.— E. crassicolle Lund. 9, (\times 400) (after Lundell); 10, (\times 520).</td>
<td>71</td>
</tr>
<tr>
<td>11—13.— E. insulare (Wittr.) Roy. 11, (\times 400) (after Wittrock); 12 and 13, (\times 520) .</td>
<td>68</td>
</tr>
<tr>
<td>14.— E. insulare (Wittr.) Roy forma</td>
<td>69</td>
</tr>
<tr>
<td>15—18.— E. crispulum (Nordst.) West & G. S. West. All (\times 520).</td>
<td>72</td>
</tr>
<tr>
<td>19.— E. sublobatum Bréb. (\times 520)</td>
<td>73</td>
</tr>
<tr>
<td>20.— E. sublobatum var. subdissimile West & G. S. West</td>
<td>74</td>
</tr>
<tr>
<td>21—22.— E. validum West & G. S. West. (\times 520)</td>
<td>75</td>
</tr>
</tbody>
</table>
PLATE XLI.

FIGS.

1-4.—Micrasterias oscitans Ralfs. 1-3, × 200 (after Ralfs); 4, × 520 . . 78
5-6.—M. oscitans var. mucronata (Dixon) Wille. 5, × 220; 6, × 430 . . 79
7-11.—M. pinnatifida (Kütz.) Ralfs. 7 and 8, × 430;
9 and 10, × 400; 11, vertical view, × 520 . . 80
12.—M. pinnatifida forma. × 400 . . 82
13.—M. pinnatifida. Zygospore, × 520 . . 81
PLATE XLII.

FIGS.

1-8. — *Micrasterias truncata* (Corda) Bréb. 1, 3-6, and 8, × 220; 2 and 7, × 400.

10-13. — *M. crenata* Bréb. 10 and 11, × 200 (after Ralfs); 12 and 13, × 520.

14. — *M. Jenneri* Ralfs. × 520.
Plate 43
PLATE XLIII.

FIGS. 1-2.—*Micrasterias Jenneri* Ralfs. 1, x 400; 2, vertical view, x 300 . . 86

3.—*M. Jenneri* var. *simplex* West. x 400 . 88

4-8.—*M. conferta* Lund. 4-6, x 200 (after Lundell); 7 and 8, x 520. Fig. 4 has not been well executed, the lobulation being somewhat inexact . . 88

9.—*M. conferta* forma. x 520. This specimen is intermediate between the typical form and var. *hamata* . . 90

10-11.—*M. conferta* var. *hamata* Wolle. 10, x 520; 11, larger specimen, x 430 . . 90
PLATE XLIV.

PIGS.

1-2.—Micrasterias papillifera Bréb. × 400 . . . 91
3.—M. papillifera forma major. × 220 . . . 92
4-5.—M. papillifera var. glabra Nordst. 4, × 520; 5, × 400 . . . 93
6.—M. papillifera var. varvicensis Turn. × 250 (after Turner) . . . 93
7.—M. papillifera. Zygospore, × 200 (after Ralfs) 91
Plate 45
PLATE XLV.

FIGS.
1–3.—*Micrasterias Murrayi* West & G. S. West. 1, \(\times 300 \); 2 and 3, \(\times 430 \) . 93

4.—*M. Murrayi* var. *triquetra* West & G. S. West.
\(\times 520 \) . 94

5–6.—*M. truncata* (Corda) Bréb. \(\times 220 \) . 82

7.—*Euastrum sublobatum* Bréb. var. *dissimile* Nordst.
\(\times 570 \) (after Nordstedt). This figure (especially fig. 7 a of the front view) has not been correctly executed . 74
PLATE XLVI.

FIGS.

1-2.—*Micrasterias Sol* (Ehrenb.) Kütz. × 350

3-4.—*M. Sol* var. *ornata* Nordst. 3, × 275 (after Nordstedt); 4, small form, × 520.

5.—*M. apiculata* (Ehrenb.) Menegh. var. *brachyptera* (Lund.) West & G. S. West. × 200.

6.—Polar lobe of a form of *M. apiculata* var. *jimbriata* (Ralfs) Nordst. × 400.

PAGE

95

97

97

99
PLATE XLVII.

FIGS.
1-2.—*Micrasterias apiculata* (Ehrenb.) Menegh. 1, \times 250 (after a drawing by Turner); 2, \times 170. 97
(In fig. 1 we think the size of the teeth on the polar lobe has been somewhat exaggerated by Turner.)
3-4.—*M. apiculata* var. *fimbriata* (Ralfs) Nordst. 3, \times 200 (after Ralfs); 4, \times 200 (after Nordstedt) 99
5.—*M. apiculata* var. *fimbriata* forma *spinosa* Bissett. \times 200 (after Bissett) 100
6.—*M. apiculata* var. *brachyptera* (Lund.) West & G. S. West. \times 200 (after Lundell) 101
7.—*M. apiculata* var. *brachyptera* (Lund.) West & G. S. West. A smooth form (forma *glabriuscula* Nordst.) \times 200 (after Nordstedt) 102
PLATE XLVIII.

FIGS. 1–6.—*Micrasterias rotata* (Grev.) Ralfs.
1, × 500; 2 and 3, polar lobes of two individuals, × 220; 4, vertical view, × 200 (after Archer); 5, side view, × 200 (after Archer); 6, zygospore, × 400 (after Lundell). PAGE 102
PLATE XLIX.

FIGS. 1–7.—*Micrasterias denticulata* Bréb. 1, × 400; 2 and 3, polar lobes of two individuals, × 220; 4, vertical view; 5, side view; 6, basal view of semicell; 4–6, × 200 (after Archer). 7, zygospore, × 400 (after Ralfs) . . 105
PLATE L.

1–2.—*Micrasterias denticulata* Bréb. 1, × 200; 2, zygospore, × 120. 105

5.—*M. denticulata* var. *angustosinuata* Gay. Portion of semicell, × 400. 108

6.—*M. denticulata* var. *notata* Nordst. 6a, × 300; 6b, × 180. 108

7.—*M. denticulata* var. *subnotata* West. Vertical view, × 220. 108
PLATE LI.

FIGS. PAGE
1.—_Micrasterias cornuta_ Benn. × 200 (after Bennett) 124
2.—_M. verrucosa_ Bissett. × 200 (after Bissett) 109
3–6.—_M. Thomasiana_ Archer. 3 and 4, × 200 (after Archer); 5, × 400; 6, basal view of semi-cell with reduced processes, × 170 110
7.—An intermediate form between _M. Thomasiana_ and _M. denticulata_. × 170 112
PLATE LII.

FIGS.
1-9.—*Micrasterias radiata* Hass. 1, × 400; 2, × 520;
3, basal view of semicell, × 520; 4, × 200;
5, specimen showing reduction of divisions of
lateral lobes, × 300; 6, × 200; 7, drawing
of an American specimen which approaches
M. dichotoma Wolle; 8 and 9, abnormal con-
ditions of lateral lobules, × 400.
PLATE LIII.

FIGS.

1-2.—Microstherias Crux-Melitensis (Ehrenb.) Hass. 1, \(\times 520 \); 2, \(\times 400 \) . . 116

3.—M. Crux-Melitensis. Form showing further division of lateral lobules, \(\times 400 \) . . 116

4-5.—M. Americana (Ehrenb.) Ralfs. 4, \(\times 520 \); 5, \(\times 400 \) . . 117

6.—M. Americana var. Boldtii Gutw. \(\times 400 \) . . 120
PLATE LIV.

<table>
<thead>
<tr>
<th>FIGS.</th>
<th>DESCRIPTION</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-3.</td>
<td>Micrasterias Americana (Ehrenb.) Ralfs. × 520. 2, vertical view; 3, side view of semicell</td>
<td>117</td>
</tr>
<tr>
<td>4.</td>
<td>M. Americana var. recta Wolle. × 400</td>
<td>119</td>
</tr>
<tr>
<td>5-6.</td>
<td>M. Americana var. Lewisiana West. × 400</td>
<td>120</td>
</tr>
<tr>
<td>7-8.</td>
<td>M. Mahabuleswarensis Hobson var. Wallichii (Grun.) West & G. S. West. 7, × 200; 8, × 430</td>
<td>122</td>
</tr>
</tbody>
</table>
PLATE LV.

FIGS.

1-3.—*Micrasterias Mahabuleshwarensis* Hobson var. *Wallichii* (Grun.) West & G. S. West. 1, vertical view, × 520; 2 and 3, abnormal semi-cells from the plankton of Loch Bhaic, Scotland, showing malformation of both lateral and polar lobes, × 520.

4.—*Euastrum crassum* (Bréb.) Kütz. var. *Taturnii* West & G. S. West. × 520.

PAGE

122

8
PLATE LVI.

FIGS.

1-3.—*Cosmarium obsoletum* (Hantzsch) Reinsch. $\times 520$ 133

4.—*C. obsoletum*. $\times 520$. A large tropical form from Ceylon showing the large pore in the thickening of the basal angles of the semicells. This form has been named "var. *Sitvense*" by Gutwinski 134

5.—*C. Smolandicum* Lund. $\times 400$ (after Lundell) 134

6-7.—*C. Smolandicum var. angustatum* West & G. S. West. $\times 400$ 135

8-10.—*C. taxichondriforme* Eichler & Gutw. 8, $\times 750$ (after Eichler and Gutwinski); 9 and 10, $\times 400$ 136

11, 13, 14.—*C. circulare* Reinsch. 11, $\times 960$ (after Reinsch); 13 and 14, $\times 400$ 136

12.—*C. circulare forma minor*. $\times 1200$ (after Raciborski) 137
PLATE LVII.

<table>
<thead>
<tr>
<th>FIGS</th>
<th>DESCRIPTION</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-2.</td>
<td>Cosmarium Lundellii Delp. × 412 (after Delponte)</td>
<td>138</td>
</tr>
<tr>
<td>3-4.</td>
<td>C. Lundellii var. ellipticum West. 3, × 400; 4, × 520</td>
<td>138</td>
</tr>
<tr>
<td>5-6.</td>
<td>C. Lundellii var. corruptum (Turn.) West & G. S. West. × 520.</td>
<td>139</td>
</tr>
<tr>
<td>7.</td>
<td>C. pachydermum Lund. × 400 (after Lundell)</td>
<td></td>
</tr>
<tr>
<td>8-9.</td>
<td>C. pachydermum var. aethiopicum West & G. S. West. × 520.</td>
<td>139</td>
</tr>
<tr>
<td>10.</td>
<td>C. Ralfsii Bréb. × 400</td>
<td>140</td>
</tr>
</tbody>
</table>
PLATE LVIII.

<table>
<thead>
<tr>
<th>FIGS.</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-2.</td>
<td>— Cosmarium Ralfsii Bréb. × 400</td>
</tr>
<tr>
<td>3.</td>
<td>C. Ralfsii var. montanum Racib. × 400</td>
</tr>
<tr>
<td>4-5.</td>
<td>C. perforatum Lund. 4, × 520; 5, × 400 (after Lundell)</td>
</tr>
<tr>
<td>6.</td>
<td>C. ocellatum Eichler & Gutw. 6a, × 750; 6a', and 6b, × 1000 (after Eichler and Gutwinski)</td>
</tr>
<tr>
<td>7.</td>
<td>C. ocellatum var. incrassatum West & G. S. West. × 520</td>
</tr>
<tr>
<td>8-9.</td>
<td>C. cyclicum Lund. 8, × 400 (after Lundell); 9, × 400</td>
</tr>
<tr>
<td>10.</td>
<td>C. cyclicum var. arcticum Nordst. × 400 (after Nordstedt)</td>
</tr>
<tr>
<td>11.</td>
<td>C. cyclicum var. arcticum Nordst. forma. × 400 (after Roy and Bissett)</td>
</tr>
<tr>
<td>12.</td>
<td>C. cyclicum var. Nordstedtianum (Reinsch) West & G. S. West. × 520</td>
</tr>
</tbody>
</table>
Plate 59
PLATE LIX.

FIGS.

1–5.—Cosmarium undulatum Corda. All × 400.
 1, 4, and 5, after Ralfs 148

6–7.—C. undulatum var. minutum Wittr. 6, × 400
 (after Wittrock); 7, × 1280 (after Raciborski) 149

8–10.—C. undulatum var. Wollei West. 8 and 9, ×
 500 (after Wolle); 10, zygospore, × 400
 (after Ralfs) 150

11–12.—C. undulatum var. crenulatum (Näg.) Wittr.
 11, × 500; 12, × 600 (after Nägeli) . . . 150

13–15.—C. subundulatum Wille. 13, × 480 (after
 Wille); 14, × 600; 15, × 400 . . 151

16–17.—C. fontigenum Nordst. 16, × 520; 17, × 500
 (after Norstedt) 147

18–20.—C. Cucumis (Corda) Ralfs. 18, × 400 (after
 Gay); 19 and 20, × 400 (after Ralfs) . . . 152

21–22.—C. Cucumis var. magnum Racib. 21, × 520;
 22, × 400 154
PLATE LX.

<table>
<thead>
<tr>
<th>FIGS.</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figs. 1-3. — Cosmarium Subcucumis Schmidle. 1, × 450 (after Schmidle); 2 and 3, × 520.</td>
<td>155</td>
</tr>
<tr>
<td>4. — C. Subcucumis ? × 520. This individual shows an intermediate condition between axile and parietal chloroplasts</td>
<td>156</td>
</tr>
<tr>
<td>5-8. — C. microsphinctum Nordst. 5 and 6, × 400 (after Nordstedt); 6, zygospore; 7 and 8, × 520</td>
<td>156</td>
</tr>
<tr>
<td>9. — C. microsphinctum forma parvula Wille. × 330 (after Wille)</td>
<td>157</td>
</tr>
<tr>
<td>10. — C. microsphinctum var. majus Roy & Biss. × 400 (after Roy)</td>
<td>157</td>
</tr>
<tr>
<td>11. — C. morsum West. × 520.</td>
<td>157</td>
</tr>
<tr>
<td>12-14. — C. Phaseolus Brél. 12, × 400 (after Ralfs); 13, × 400; 14, zygospore, × 500 (after Wolle)</td>
<td>158</td>
</tr>
<tr>
<td>15. — C. Phaseolus forma minor Boldt. × 520.</td>
<td>159</td>
</tr>
<tr>
<td>16-17. — C. Phaseolus var. elevatum Nordst. 16, × 570 (after Nordstedt); 17, × 520.</td>
<td>159</td>
</tr>
<tr>
<td>18. — C. tumidum Lund. × 400 (after Lundell)</td>
<td>160</td>
</tr>
<tr>
<td>19. — C. tumidum forma subrectangularis West & G. S. West. × 400.</td>
<td>161</td>
</tr>
<tr>
<td>20. — C. Traftalgaricum Wittr. × 400 (after Wittrock)</td>
<td>161</td>
</tr>
<tr>
<td>21-23. — C. melanosporum Arch. 21 and 22, × 600 (after Roy); 23, × 520; 22 and 23, zygospores.</td>
<td>162</td>
</tr>
<tr>
<td>24-25. — C. asphaerosporum Nordst. × 570 (after Nordstedt). 25, zygospore (z, front view; z', end view; z'', side view)</td>
<td>163</td>
</tr>
<tr>
<td>26-27. — C. asphaerosporum var. strigosum Nordst. 26, × 600 (after Nordstedt); 27, × 520</td>
<td>164</td>
</tr>
</tbody>
</table>
PLATE LXI.

FIGS.

1–2.—Cosmarium inconspicuum West & G. S. West.
 × 520. 2, zygospore . 164

3–7.—C. bioculatum Bréb. 3–6, × 520; 7, × 400;
 5–7, zygospores; 7, after Ralfs . 165

8–9.—C. bioculatum forma depressa Schaarschm. 8,
 × 800 (after Schaarschmidt); 9, × 520 . 166

10–11.—C. bioculatum var. hians West & G. S. West.
 × 520 . 166

12–15.—C. tenue Arch. 12, 14 and 15, × 400; 13,
 × 600 . 167

16–18.—C. tinctum Ralfs. 16, × 600; 17 and 18, zygos-
 spores, × 400 (after Ralfs) . 168

19–20.—C. tinctum var. intermedium Nordst. 19, ×
 520; 20, × 570 (after Nordstedt) . 169

21–22.—C. flavum Roy & Biss. × 400 (after Roy).
 22, zygospore . 170

23–25.—C. contractum Kirchm. 23, × 500; 24 and
 25, × 400 . 170

26.—C. contractum forma Jacobsenii (Roy) West &
 G. S. West. × 400 (after Jacobsen) . 171

27.—C. contractum var. Gartanense West & G. S.
 West. × 520 . 173

28.—C. contractum var. ellipsoideum (Elfv.) West &
 G. S. West. × 500 (after Elfving) . 172

29.—C. contractum var. ellipsoideum forma retusa
 West & G. S. West. × 520 . 173

30–32.—C. contractum var. ellipsoideum forma (1). × 520 173

33.—C. contractum var. ellipsoideum forma (2). × 520 173

34.—Zygospore of C. contractum. × 400 . 171

35.—Zygospore of C. contractum var. ellipsoideum.
 × 400 (after Lütkemüller) . 172

36–37.—C. subcontractum West & G. S. West. × 400. 174

38.—C. subaversum Borge. × 740 (after Borge) . 174
PLATE LXII.

1. — *Cosmarium tetrachondrum* Lund. x 400 (after Lundell).

2-5. — *C. depressum* (Näg.) Lund. 2, x 300 (after Nägeli); 3 and 4, x 416 (after Delponte); 5, x 520.

6-9. — *C. depressum* var. *achondrum* (Boldt) West & G. S. West. 6, x 400 (after Boldt); 7-9, x 520.

10. — *C. depressum* var. *reniforme* West & G. S. West. x 520.

11-13. — *C. subquadrans* West & G. S. West. 11, x 500; 12 and 13, x 400.

14-16. — *C. succisum* West. 14, x 400; 15 and 16, x 520.

17-18. — *C. retusiforme* (Wille) Gutw. 17, x 480 (after Wille); 18, x 520.

19. — *C. subretusiforme* West & G. S. West. x 830.

20-21. — *C. Hammeri* Reinsch. 20, x about 550 (after Reinsch); 21, x 520.

22-23. — *C. Hammeri* var. *homaloderum* (Nordst.) West & G. S. West. 22, x 400 (after Nordstedt); 23, x 330 (after Wille).

24-25. — *C. Hammeri* var. *protuberans* West & G. S. West. 24, x 520; 25, zygospore, x 400.

26-27. — *C. Nymannahianum* Grun. x 520.

28-30. — *C. trilobulatum* Reinsch. 28 and 29, x 520; 30, x about 1260 (after Reinsch).

PAGE

175
176
177
178
178
179
180
180
181
182
183
184
185
PLATE LXIII.

FIGS. PAGE
1–4.—*Cosmarium granatum* Bréb. 1, × 400 (after Ralfs); 2–4, × 520 . 186
5–8.—*C. granatum* var. *subgranatum* Nordst. 5, × 570 (after Nordstedt); 6–8, × 520; 8, zygospore . 188
9.—*C. granatum* var. *Grunowii* Roy & Biss. × 400 (after Grunow) . 189
10.—*C. granatum* var. *elongatum* Nordst. × 400 (after Nordstedt) . 189
11–15.—*C. Pokornyanum* (Grun.) West & G. S. West. 11, × 400 (after Wittrock); 12, × 400 (after Nordstedt); 13, × 400; 14 and 15, × 520 . 190
16–17.—*C. pseudatlanthoideum* West. × 520 . 191
18–20.—*C. subtumidum* Nordst. 18, × 400 (after Nordstedt); 19 and 20, × 520 . 192
21–23.—*C. subtumidum* var. *Klebsii* (Gutw.) West & G. S. West. 21, × 535 (outline, after Gutwinski); 22 and 23, × 520 . 193
24–25.—*C. galeritum* Nordst. 24, × 400 (after Nordstedt); 25, × 400 . 194
26.—*C. pseudonitidulum* Nordst. × 400 (after Nordstedt) . 195
27–30.—*C. pseudonitidulum* var. *validum* West & G. S. West. 27–29, × 520; 30 × 400 (after Nordstedt) . 196
PLATE LXIV.

FIGS. PAGE
1-3.—Cosmarium nitidulum De Not. 1, × 500 (after Wolle); 2, × 400 (after Nordstedt); 3, × 520 197
4.—C. canaliculatum West & G. S. West. × 625. 198
5-7.—C. pyramidalatum Bréb. 5, × 500; 6, × 400; 7, side view, × 400 (after Ralfs) . 199
8.—C. pyramidalatum var. angustatum West & G. S. West. × 520. 200
9-12.—C. pseudopyramidalatum Lund. 9, × 400 (after Lundell); 10-12, × 520; 12, zygospore . 201
13.—C. pseudopyramidalatum var. stenonotum Nordst. × 400 (after Nordstedt). . 202
14-16.—C. variolatum Lund. 14, × 400 (after Lundell); 15, × 400; 16, × 520 . 203
17.—Euastrum pulchellum Bréb. var. retusum West & G. S. West. × 400 . 46
RAY SOCIETY

INSTITUTED 1844

FOR THE PUBLICATION OF WORKS ON
NATURAL HISTORY

ANNUAL SUBSCRIPTION ONE GUINEA

LIST OF THE SOCIETY
FOR THE YEAR 1905

WITH A

LIST OF THE PUBLICATIONS
1844–1905

CORRECTED TO OCTOBER, 1905
OFFICERS AND COUNCIL.

1905—1906.

President.

Vice-Presidents.
Rev. Canon NORMAN, M.A., D.C.L., LL.D., F.R.S.
ALBERT D. MICHAEL, F.L.S., F.Z.S.
The Rt. Hon. LORD WALSINGHAM, M.A., LL.D., F.R.S.

Council.
Robert Braithwaite, M.D., F.L.S.
T. A. Chapman, M.D., F.Z.S.
Rev. Alfred Fuller, M.A., F.E.S.
Sidney F. Harmer, Sc.D., F.R.S.
Prof. W. A. Herdman, D.Sc., F.R.S., F.R.S.E., Pres.L.S.
B. Daydon Jackson, F.L.S.
Albert H. Jones, F.E.S.
Henry Laver, M.R.C.S.
J. W. S. Meiklejohn, M.D., F.L.S.
J. S. Phéné, LL.D., F.S.A.
Prof. Edward B. Poulton, M.A., Sc.D., LL.D., F.R.S.
Henry Power, M.B., F.L.S., F.Z.S.
P. H. Pye-Smith, M.D., B.A., F.R.C.P., F.R.S.
Henry Spicer, B.A., F.L.S., F.G.S.
Alfred O. Walker, F.L.S., F.Z.S.

Treasurer.
F. Ducane Godman, D.C.L., F.R.S., F.L.S., F.G.S.

Secretary.
LIST OF THE RAY SOCIETY.

Aberdeen, University of; King's College, Aberdeen.
Adelaide Public Library; Adelaide, S. Australia.
Adkin, Robert, F.E.S.; Wellfield, 4 Lingards Road, Lewisham, S.E.
Adlard, R. E.; Bartholomew Close, E.C.
Advocates' Library; Edinburgh.
Albany Museum; Grahamstown, Cape Colony, S. Africa.
Andrews, Arthur; Newtown House, Blackrock, Dublin.
Armstrong College; Newcastle-upon-Tyne.
Army and Navy Club; 36 Pall Mall, S.W.
Athenaeum Club; Pall Mall, S.W.
Australian Museum; Sydney, New South Wales.
Baer, Joseph, & Co.; 6 Hochstrasse, Frankfort, Germany.
Barrow-in-Furness Public Library; Barrow-in-Furness.
Battersea Public Library; Lavender Hill, S.W.
Belfast Library; Donegal Square, Belfast.
Beres, A. A., M.A.; Castlemead, Windsor.
Bergen Museum; Bergen, Norway.
Berlin Royal Library; Berlin.
Berlin Royal Zoological Museum; Berlin.
Berne Natural History Museum; Berne, Switzerland.
Bethune-Baker, George T., F.L.S., F.E.S.; 19 Clarendon Road, Edgbaston, Birmingham.
Bibliothèque Nationale; Paris.
Binks, Mrs. I.; 9 Burton Street, Wakefield.
Birmingham Free Libraries; Birmingham.
Birmingham Library; Margaret Street, Birmingham.
Blackburne-Maze, W. P., F.E.S.; Shaw House, Newbury.
Board of Education, Secondary Branch; South Kensington, S.W.
Bodleian Library; Oxford.
Bootle Free Library; Oriel Road, Bootle, Liverpool.
Børgesen, Dr. F.; Botanic Library, Copenhagen.
Bostock, E. D., F.E.S.; Holly House, Stone.
Boston Public Library; Boston, Mass., U.S.A.
Bourne, T. W.; The Wold, Kingskerswell, Newton Abbot.
Bradford Natural History and Microscopical Society; Church Institute, North Parade, Bradford.
Brady, G. Stewardson, M.D., LL.D., F.R.S., Professor of Natural History, Durham College of Science; 2 Mowbray Villas, Sunderland.
Braithwaite, Robert, M.D., M.R.C.S.E., F.L.S.; 26 Endymion Road, Brixton Hill, S.W.
Breslau University Library; Breslau, Germany.
Briggs, C. A., F.E.S.; Rock House, Lynmouth, r.s.o., North Devon.
Briggs, T. H., M.A., F.E.S.; Rock House, Lynmouth, r.s.o., North Devon.
Brighton and Hove Natural History Society; Public Library, Brighton.
Bristol Museum and Reference Library; Queen’s Road, Bristol.
British Museum; Bloomsbury, W.C.
Brockholes, Mrs. J. Fitzherbert; Clifton Hill, Garstang, r.s.o., Lancashire.
Bromley Naturalists’ Society; 92 London Road, Bromley, Kent.
Brussels National Library; Brussels.
Buchan-Hepburn, Sir Archibald, Bart., F.E.S.; Smeaton-Hepburn, Prestonkirk, N.B.
Cambridge Philosophical Library; New Museums, Cambridge.
Cambridge University Library; Cambridge.
Canterbury, Philosophical Institution of; Christchurch, New Zealand.
Cardiff Free Libraries; Cardiff.
Carlyon, T. A.; Connemara, Darracott Road, Boscombe Park, Bournemouth.
Chapman, T. Algernon, M.D., F.Z.S., F.E.S.; Betula, Reigate.
Chawner, Miss Ethel F., F.E.S.; Forest Bank, Lyndhurst, R.S.O., Hants.
Cheltenham Natural Science Society; Cheltenham.
Chester Society of Natural Science; Grosvenor Museum, Chester.
Chicago Public Library; Chicago, Ill., U.S.A.
Christiania, University of; Christiania, Norway.
Church, Sir W. S., Bart., M.D.; 130 Harley Street, W.
Clark, J. A., L.D.S., F.E.S.; 57 Weston Park, Crouch End, N.
Cleland, John, M.D., D.Sc., LL.D., F.R.S., Professor of Anatomy, University of Glasgow; 2 The University, Glasgow.
Congress, Library of; Washington, D.C., U.S.A.
Cornell University Library; Ithaca, New York, U.S.A.
Cornwall, Royal Institution of; Truro.
Cotton, John, M.R.C.S., F.E.S.; Simonswood, Prescot Road, St. Helens.
Crawford, W. C.; 1 Lockerton Gardens, Colinton Road, Edinburgh.
Croft, R. Benyon, R.N.; Fanhams Hall, Ware.
Croydon Public Libraries; Town Hall, Croydon.
Davies, A. Ellson, Ph.D., F.L.S., F.C.S.; Tweedbank, West Savile Road, Edinburgh.
Derby Free Library and Museum; Wardwick, Derby.
Detroit Public Library; Detroit, Mich., U.S.A.
Dickinson, William; Warham Road, Croydon.
Downing College; Cambridge.
Dublin, Royal, Society; Leinster House, Dublin.

East Kent Natural History Society; Medical Hall, Canterbury.
Eastwood, John E., F.E.S.; Enton Lodge, Witley, Godalming.
Edinburgh Public Library; Edinburgh.
Edinburgh, Royal Society of; Edinburgh.
Edinburgh, University of; Edinburgh.
England, Royal College of Surgeons of; Lincoln’s Inn Fields, W.C.

Fielding, Clement, M.P.S.; Clover Hill, Halifax.
Fletcher, W. H. B., M.A., F.E.S.; Aldwick Manor, Bognor.
Folkestone Free Public Library and Museum; Folkestone.
Foster, C.; Thorpe, Norwich.
France, Institut de; Paris.
Fraser, F. J.; 19 Southampton Street, Bloomsbury, W.C.
Freeman, Francis F., F.E.S.; Abbotsfield, Tavistock.
Fulham Public Libraries (Central Library); 598 Fulham Road, S.W.
Fuller, The Rev. Alfred, M.A., F.E.S.; The Lodge, Sydenham Hill, S.E.

Gannett, Frank W.; Dalegarth, Windermere.
Gascoigne, Major French; Llotherton Hall, Aberford, Leeds.
Geological Society of London; Burlington House, Piccadilly, W.
Gerold & Co.; Vienna.
Gibson, Miss; Hill House, Saffron Walden.
Giles, Harry M.; Zoological Gardens, South Perth, Western Australia.
Glasgow Natural History Society; 207 Bath Street, Glasgow.
Glasgow, Royal Philosophical Society of; 137 West George Street, Glasgow.
Glasgow, University of; Glasgow.
Godman, F. DuCane, D.C.L., F.R.S., F.L.S., F.G.S., F.Z.S., F.E.S., F.R.H.S., Treasurer; 7 Carlos Place, Grosvenor Square, W., and South Lodge, Horsham.
Gottingen University Library; Gottingen, Germany.
Great Britain, Pharmaceutical Society of; 17 Bloomsbury Square, W.C.
Green, E. Ernest, F.E.S., Government Entomologist; Royal Botanic Gardens, Peradeniya, Ceylon.
Grosvenor Public Library; Buffalo, N.Y., U.S.A.
Guille-Allès Library; Guernsey.

Haileybury College; Hertford.
Halifax Public Library; Belle View, Halifax.
Hardy, Alfred Douglas, F.L.S., F.R.M.S.; Lands Department, Melbourne, Victoria, Australia.
Harley, John, M.D., F.R.C.P., F.L.S.; Beechings, Pulborough, r.s.o., Sussex.
Harrison, Albert, F.L.S., F.E.S., F.R.M.S., F.C.S.; Delamere, Grove Road, South Woodford.
Harvard University Museum of Comparative Zoology; Harvard, Cambridge, U.S.A.
Hastings and St. Leonards Natural History Society; The Museum, Hastings.
Heidelberg University; Heidelberg, Germany.
Hertfordshire County Museum; St. Albans.
Hertfordshire Natural History Society and Field Club; Upton House, Watford.
Hilton, James; 60 Montague Square, W.
Hood, Donald W. C., M.D.; 43 Green Street, Park Lane, W.

Hope, G. P.; Havering Grange, Romford.

Hopkinson, John, F.I.S., F.G.S., F.R.M.S., V.P.R. Met. Soc., Assoc. Inst. C.E., Secretary; W.etwood, Watford, and 84 New Bond Street, W.

Huddersfield Naturalist and Photographic Society; The Technical College, Huddersfield.

Hull Public Libraries; Hull.

Ireland, National Library of; Kildare Street, Dublin.

Irish, Royal, Academy; 19 Dawson Street, Dublin.

Jackson, B. Daydon, F.I.S., General Secretary of the Linnean Society; 21, Cautley Avenue, Clapham Common, S.W.

John Crerer Library; Chicago, Ill., U.S.A.

Jones, Albert H., F.E.S.; Shrublands, Eltham.

Justen, Frederick, F.I.S.; 37 Soho Square, W.

Kenrick, G. H., F.E.S.; Whetstone, Somerset Road, Edgbaston, Birmingham.

Kiel University Library; Kiel, Germany.

Kilmarnock Public Library and Museum; Kilmarnock, N.B.

King’s Inn Library; Dublin.

Knight, H. H.; Bank House, Llandovery.

Laver, Henry, M.R.C.S.; 43 Head Street, Colchester.

Lebour, Miss Marie V., B.Sc.; Radcliffe House, Corbridge, r.s.o., Northumberland.

Leeds Public Free Libraries; Leeds.

Leeds, University of; Leeds.

Leicester Free Public Library; Wellington Street, Leicester.

Lemann, F. C., F.E.S.; Black Friars House, Plymouth.

Lethbridge, Ambrose Y., F.E.S.; Buckhurst, Wokingham, and Rokeby, Barnard Castle.

Linnean Society of London; Burlington House, Piccadilly, W.
Liverpool Athenæum; Liverpool.
Liverpool Free Public Libraries; Liverpool.
Liverpool Microscopical Society; 20 Hackings Hey, Liverpool.
London Institution; Finsbury Circus, E.C.
London Library; 12 St. James’s Square, S.W.
Longstaff, G. B., M.D.; Highlands, Putney Heath, S.W.
Los Angeles Public Library; California, U.S.A.
Lyon Université Bibliothèque; Lyons, France.

McIntosh, W. Carmichael, M.D., LL.D., F.R.S.L.&E., F.L.S., Professor of Natural History, University of St. Andrews; 2 Abbotsford Crescent, St. Andrews, N.B.
Macvicar, Symers Macdonald, M.A.; Invermoidart, Acharacle, r.s.o., Argyllshire.
Magdalen College; Oxford.
Manchester Literary and Philosophical Society; 36 George Street, Manchester.
Manchester Public Free Libraries; Manchester.
Marlborough College Natural History Society; Marlborough.
Massey, W. H.; Twyford, r.s.o., Berks.
Meiklejohn, J. W. S., M.D., F.L.S.; 105 Holland Road, Kensington, W.
Melbourne Public Library; Melbourne, Australia.
Mennell, H. T., F.L.S.; 10 St. Dunstan’s Buildings, Great Tower Street, E.C.
Middlesborough Free Libraries; Middlesborough.
Mitchell Library; 21 Miller Street, Glasgow.
Morgan, Ralph; 9 Clifton Hill, Exeter.
Munich Royal Library; Munich, Germany.
Murray, James; Challenger Office, Villa Medusa, Boswell Road, Edinburgh; and Ardoch Nerston, East Kilbride, N.B.
Muséum d’Histoire Naturelle; Paris.
Newcastle-upon-Tyne Literary and Philosophical Society;
Westgate Road, Newcastle-upon-Tyne.
Newcastle-upon-Tyne Natural History Society; Museum,
Barras Bridge, Newcastle-upon-Tyne.
Newcastle-upon-Tyne Public Library; Newcastle-upon-Tyne.
New South Wales, Royal Society of; Sydney, N.S.W.
Newstead, Robert, A.L.S., F.E.S., Hon.F.R.H.S.; School of
Tropical Medicine, The University, Liverpool.
New York Botanical Garden; Bronx Park, New York City,
N.Y., U.S.A.
New York Public Library; New York, U.S.A.
New York State Library; Albany, N.Y., U.S.A.
Noble, Sir Andrew, K.C.B., F.R.S.; Jesmond Dene House,
Newcastle-on-Tyne.
Norfolk and Norwich Library; Norwich.
Norman, The Rev. A. Merle, M.A., D.C.L., LL.D., F.R.S.,
F.L.S., Hon. Canon of Durham, Vice-President; The
Red House, Berkhamsted.
Norwich Free Library; Norwich.
Nottingham Free Public Libraries; Nottingham.
Okamura, Prof. K.; 4 Ichibei-machi I, Azabu, Tokyo, Japan.
Ontario Agricultural College; Guelph, Canada.
Otago, University of; Dunedin, New Zealand.
Owens College (Christie Library); Manchester.
Paisley Philosophical Institution; 3 County Place, Paisley.
Peabody Institute; Baltimore, Maryland, U.S.A.
Perthshire Society of Natural Science; Tay Street, Perth.
Phené, J. S., LL.D., F.S.A.; 5 Carlton Terrace, Oakley Street,
S.W.
Philadelphia Academy of Natural Sciences; Philadelphia,
Pa., U.S.A.
Pickard-Cambridge, The Rev. O., M.A., F.R.S.; Bloxworth
Rectory, Wareham.
Plowman, T.; Nystuen Lodge, Bycullah Park, Enfield.
Plymouth Institution; Atheneum, Plymouth.
Portsmouth Free Public Library; Town Hall, Portsmouth.
Poulton, Edward B., M.A., Sc.D., LL.D., F.R.S., F.L.S.,
F.G.S., F.E.S., Hope Professor of Zoology, University of
Oxford; Wykeham House, Oxford.
LIST OF THE RAY SOCIETY.

Preston Free Public Libraries and Museum; Preston.
Pye-Smith, P. H., M.D., B.A., F.R.C.P., F.R.S.; 48 Brook Street, Cavendish Square, W.

Quaritch, Bernard; 15, Piccadilly, W.
Queen's College; Belfast.
Queen's College; Cork.
Quekett Microscopical Club; 20 Hanover Square, W.

Radcliffe Library; Museum, Oxford.
Rashleigh, Evelyn William; Stoketon, Saltash, Cornwall.
Reader, Thomas; Beaufort House, 125 Peckham Rye, S.E.
Rotherham Naturalists' Society; Rotherham.
Royal Academy of Sciences; Amsterdam.
Royal Academy of Sciences; Stockholm, Sweden.
Royal College of Science; Dublin.
Royal Institution of Great Britain; Albemarle Street, W.
Royal Microscopical Society; 20 Hanover Square, W.
Royal Society; Burlington House, Piccadilly, W.

St. Albans Public Library; St. Albans.
St. Andrews University; St. Andrews, N.B.
St. Catharine's College; Cambridge.
Salford Free Museum and Libraries; Peel Park, Salford, Manchester.

Salisbury Microscopical Society; Salisbury.
Scharff, R. F., Ph.D., B.Sc., F.L.S., F.Z.S.; Tudor House, Dundrum, r.s.o., co. Dublin.
Sears, R. S. Wilson; 1 Lisson Grove, Marylebone, N.W.
Sheffield Literary and Philosophical Society; Leopold Street, Sheffield.
Schmidle, Prof. W., Seminar-Director; Meersburg-on-Bodensee, Baden, Germany.
Schmidt, Max, Ph.D.; Weg beim Täger, Gross Borstel, bei Hamburg.
Scottish, Royal, Museum; Edinburgh.
Sidney-Sussex College; Cambridge.
Sion College Library; Victoria Embankment, E.C.
Soar, C. D.; 37 Dryburgh Road, Putney, S.W.
Somersetshire Archaeological and Natural History Society; The Castle, Taunton.
Southport Free Library; Southport.
Stazione Zoologica; Naples.
Stechert, G. E.; 2 Star Yard, Carey Street, W.C.
Stoke Newington Public Libraries; Church Street, N.
Stubbins, J.; Woodlands, Pool, Leeds.
Sunderland Library and Literary Society; Fawcett Street, Sunderland.
Terry, C.; Foxhill Grove, Bath.
Toronto, University of; Toronto, Canada.
Torquay Natural History Society; Museum, Babbacombe Road, Torquay.
Town, Miss; 7 Oakroyd Villas, Bradford.
Townshend, Frederick, M.A., F.L.S.; Honington Hall, Shipston-on-Stour.
Trinity College; Cambridge.
Trinity College; Dublin.
Trondhjem, Royal Library of; Trondhjem, Norway.
Tunstall, Wilmot, F.E.S.; Caerleon, Greenlaw Drive, Paisley, N.B.
University College, London; Gower Street, W.C.
Upsala, University of; Upsala, Sweden.
Victoria Institute; Worcester.
Warrington Municipal Museum; Warrington.

Weg, Max; 1, Leplaystrass, Leipzig.

Wesley, E. F., A.K.C.; 28 Essex Street, Strand, W.C.

West Kent Natural History Society; Blackheath, S.E.

Whittle, F. G.; 3 Marine Avenue, Southend-on-Sea.

Wickes, W. D., F.L.S.; 20 Warrior Square, Southend-on-Sea.

Woodd-Smith, Miss B. M.; 17 Langland Gardens, Hampstead, N.W.

Yale University; New Haven, U.S.A.

Yorkshire Philosophical Society; Museum, York.

Zoological Society of London; 3 Hanover Square, W.

The Advocates' Library, Edinburgh; the Bodleian Library, Oxford; the British Museum; Cambridge University Library; and Trinity College, Dublin, entered in the List, receive the Society's publications in accordance with the Copyright Act.
LIST OF THE PUBLICATIONS
OF THE
RAY SOCIETY.

For the First Year, 1844.

1 Reports on the Progress of Zoology and Botany, 1841, 1842. viii + 496 + xx pp. 8vo. 1845.

3 Memorials of John Ray, consisting of his Life by Dr. Derham; . . . with his Itineraries, etc. Edited by Edwin Lankester. xii + 220 pp. 8vo. 1846.

For the Second Year, 1845.

6 Reports and Papers on Botany. viii + 494 pp., 7 plates. 8vo. 1846.
7 Outlines of the Geography of Plants. By F. J. F. Meyen. Transl. by Margaret Johnston. x + 422 pp., 1 plate. 8vo. 1846.

8 The Organization of Trilobites. By Hermann Burmeister. Edited by Thomas Bell and Edward Forbes. xii + 136 pp., 6 plates. Folio. 1846.

10 Elements of Physiophilosophy. By Lorenz Oken. From the German by Alfred Tulk. xx + 666 pp. 8vo. 1847.

11 Reports on Zoology for 1843, 1844. Transl. from the German by George Busk, Alfred Tulk, and A. H. Haliday. viii + 596 pp. 8vo. 1847.

14 The Correspondence of John Ray. Edited by Edwin Lankester. xvi + 502 pp., 2 plates. 8vo. 1848.

On the Structure of the Palm-stem. By H. von Mohl. pp. 1–92, 495, pl. i.

For the Seventh Year, 1850.

For the Eighth Year, 1851.

20 The British Species of Angiocarpous Lichens, elucidated by their Sporidia. By the Rev. W. A. Leighton. vi + 102 pp., 30 plates. 8vo. 1851.
21 A Monograph of the Sub-class Cirripedia. By Charles Darwin. The Lepadidae, or Pedunculated Cirripedes. xii + 400 pp., 10 plates. 8vo. 1851.

For the Ninth Year, 1852.

For the Tenth Year, 1853.

25 A Monograph of the Sub-class Cirripedia. By Charles Darwin. The Balanidae, the Verrucidae, etc. viii + 684 pp. 8vo. 1854.
20 PUBLICATIONS OF THE RAY SOCIETY.

For the Eleventh Year, 1854.

For the Twelfth Year, 1855.

For the Thirteenth Year, 1856.

28 A Monograph of the Fresh-water Polyzoa, including all the known species, both British and Foreign. By George James Allman. vii + 122 + 22 pp., 11 plates. Folio. 1856 [1857].

For the Fourteenth Year, 1857.

For the Fifteenth Year, 1858.

30 The Oceanic Hydrozoa; a Description of the Calycophoridae and Physophoridae. . . . By Thomas Henry Huxley. x + 144 + 24 pp., 12 plates. Folio. 1859.

For the Sixteenth Year, 1859.

For the Seventeenth Year, 1860.

For the Eighteenth Year, 1861.

For the Nineteenth Year, 1862.

For the Twentieth Year, 1863.

For the Twenty-first Year, 1864.

For the Twenty-second Year, 1865.

For the Twenty-third Year, 1866.
40 Recent Memoirs on the Cetacea. Edited by William Henry Flower. xii + 312 pp., 6 plates. Folio. 1866.

41 Nitzsch’s Pterylography, translated from the German. Edited by Philip Lutley Sclater. xii + 182 pp., 10 plates. Folio. 1867.

For the Twenty-fourth Year, 1867.

For the Twenty-fifth Year, 1868.

44 Vegetable Teratology, an Account of the Principal Deviations from the Usual Structure of Plants. By Maxwell T. Masters. With Numerous Illustrations by E. M. Williams. xxxviii + 534 pages. 8vo. 1869.

For the Twenty-sixth Year, 1869.

For the Twenty-seventh Year, 1870.

For the Twenty-eighth Year, 1871.

For the Twenty-ninth Year, 1872.

For the Thirtieth Year, 1873.

For the Thirty-first Year, 1874.

For the Thirty-second Year, 1875.

For the Thirty-third Year, 1876.

For the Thirty-fourth Year, 1877.

For the Thirty-fifth Year, 1878.

For the Thirty-sixth Year, 1879.

For the Thirty-seventh Year, 1880.

For the Thirty-eighth Year, 1881.

For the Thirty-ninth Year, 1882.
For the Fortieth Year, 1883.

For the Forty-first Year, 1884.

For the Forty-second Year, 1885.

For the Forty-third Year, 1886.

64 The Larvæ of the British Butterflies and Moths. By the late William Buckler. Vol. II. (The Sphinges or Hawk-moths and part of the Bombyces.) Edited by H. T. Stainton. xii + 172 + 36 pp., 18 plates (xviii–xxxv). 8vo. 1887.

For the Forty-fourth Year, 1887.

For the Forty-fifth Year, 1888.

For the Forty-sixth Year, 1889.

For the Forty-seventh Year, 1890.

For the Forty-eighth Year, 1891.

For the Forty-ninth Year, 1892.

For the Fiftieth Year, 1893.

For the Fifty-first Year, 1894.

For the Fifty-second Year, 1895.

For the Fifty-third Year, 1896.

For the Fifty-fourth Year, 1897.

For the Fifty-fifth Year, 1898.

For the Fifty-sixth Year, 1899.

For the Fifty-seventh Year, 1900.

For the Fifty-eighth Year, 1901.

For the Fifty-ninth Year, 1902.

For the Sixtieth Year, 1903.

For the Sixty-first Year, 1904.

83 The British Tunicata. By the late Joshua Alder and the late Albany Hancock. Edited by John Hopkinson, with a history of the work by the Rev. A. M. Norman. xvi + 148 + 40 pp., 20 plates, and frontispiece. 8vo. 1905.

For the Sixty-second Year, 1905.

In Course of Publication.

The British Annelids. By Prof. W. C. McIntosh.
The British Desmidiaceae. By W. West and Prof. G. S. West.
The British Freshwater Rhizopoda and Heliozoa. By James Cash.
The British Tunicata. By the late Joshua Alder and the late Albany Hancock.

Preparing for Publication.

The British Centipedes and Millepedes. By Wilfred Mark Webb.
The British Characeae. By Henry and James Groves.
The British Parasitic Copepoda. By Dr. Thomas Scott and Andrew Scott.
The British Sphagnaceae. By E. C. Horrell.